|国家科技期刊平台
首页|期刊导航|信息工程大学学报|基于链接预测匹配的动态社交机器人检测方法

基于链接预测匹配的动态社交机器人检测方法OA

Social Bot Detection for Dynamic Social Networks Based on Link Prediction

中文摘要英文摘要

在线社交网络中机器人集群的恶意协同活动威胁了正常用户信息安全,影响了社交网络的信用体系,进行社交网络机器人账号有效检测势在必行.针对现有基于社交图的检测方法难以刻画时序社交图中的动态的链接行为的问题,提出基于链接预测匹配的动态社交网络机器人检测方法.该方法基于已知节点的链接行为,对机器人和正常用户节点分别建立节点链接预测模型并学习两类节点的链接行为的特性,通过考察未知节点链接行为关于两类链接预测模型的匹配度实现节点属性的分类.在Twitter数据集上,相比于部分主流未采用时序数据的基线方法,该方法检测准确率有显著提升,验证了对时序数据利用的有效性.

The malicious social bots in online social networks threaten the information security and af-fect the credit system of social networks,and it is imperative to effectively detect bot accounts.To ad-dress the problem that existing bot detection methods are difficult to portray the dynamic link behavior in social graphs,a dynamic bot detection method based on link prediction is proposed in this paper.We build node link prediction models based on the known links of bots and human users respectively,to learn the difference between the link behavior of both types of nodes.Finally,the classification is achieved by examining the agreement of unknown node link behavior with respect to two types of link prediction models.On the Twitter dataset,the detection accuracy is significantly improved compared with the baseline method without using temporal data,which verifies the effectiveness of this method in using temporal data.

卢昊宇;刘峰;王博雅;谭磊;左宗

河南省网络空间态势感知重点实验室,河南 郑州 450001

计算机与自动化

社交网络机器人检测链接预测图神经网络

social networksbot detectionlink predictiongraph neural network

《信息工程大学学报》 2024 (003)

285-291 / 7

国家自然科学基金(61872448,62002387,61772549,U1804263);河南省重点研发专项(221111321200)

10.3969/j.issn.1671-0673.2024.03.006

评论