| 注册
首页|期刊导航|自动化学报|知识和数据驱动的污水处理反硝化脱氮过程协同优化控制

知识和数据驱动的污水处理反硝化脱氮过程协同优化控制

韩红桂 王玉爽 刘峥 孙浩源 乔俊飞

自动化学报2024,Vol.50Issue(6):1221-1233,13.
自动化学报2024,Vol.50Issue(6):1221-1233,13.DOI:10.16383/j.aas.c230695

知识和数据驱动的污水处理反硝化脱氮过程协同优化控制

Knowledge-data-driven Cooperative Optimal Control for Wastewater Treatment Denitrification Process

韩红桂 1王玉爽 1刘峥 1孙浩源 1乔俊飞2

作者信息

  • 1. 北京工业大学信息学部 北京 100124||计算智能与智能系统北京市重点实验室 北京 100124||数字社区教育部工程研究中心 北京 100124
  • 2. 北京工业大学信息学部 北京 100124||计算智能与智能系统北京市重点实验室 北京 100124
  • 折叠

摘要

Abstract

In order to effectively improve the performance of wastewater treatment denitrification process,a know-ledge-data-driven cooperative optimal control(KDDCOC)is proposed.The main work of this paper includes the following two points:First,a cooperative optimal control objective model,based on adaptive knowledge kernel func-tion,is designed to dynamically describe the cooperative relationship among effluent quality(EQ),pumping energy consumption(PE),and key variables;Second,a knowledge guide-based cooperative optimization algorithm(KGCO)is proposed to quickly and accurately obtain the optimal set-points of nitrate nitrogen(SNO).Then,the response speed of KDDCOC is improved.A proportional-integral-derivative(PID)controller is used to track the optimal set-points of nitrate nitrogen.The proposed KDDCOC is applied to the benchmark simulation model No.1(BSM1)of wastewater treatment process.The experimental results indicate that KDDCOC can improve the effluent quality and the efficiency of denitrification,reduce the energy consumption.

关键词

污水处理反硝化脱氮过程/知识和数据驱动/协同优化控制/自适应知识核函数/知识引导的协同优化算法

Key words

Wastewater treatment denitrification process/knowledge-data-driven/cooperative optimal control/ad-aptive knowledge kernel function/knowledge guide-based cooperative optimization algorithm(KGCO)

引用本文复制引用

韩红桂,王玉爽,刘峥,孙浩源,乔俊飞..知识和数据驱动的污水处理反硝化脱氮过程协同优化控制[J].自动化学报,2024,50(6):1221-1233,13.

基金项目

国家自然科学基金(62125301,62021003,62103010,62303024),国家重点研发计划(2022YFB3305800-5),中国博士后科学基金(2022M720319),北京市自然科学基金(KZ202110005009),青年北京学者项目(037),北京市博士后工作经费资助项目(2023-zz-91)资助 Supported by National Natural Science Foundation of China(62125301,62021003,62103010,62303024),National Key Re-search and Development Program of China(2022YFB3305800-5),China Postdoctoral Science Foundation(2022M720319),Beijing Natural Science Foundation(KZ202110005009),Youth Beijing Scholars Program(037),and Beijing Postdoctoral Research Foundation(2023-zz-91) (62125301,62021003,62103010,62303024)

自动化学报

OA北大核心CSTPCD

0254-4156

访问量2
|
下载量0
段落导航相关论文