| 注册
首页|期刊导航|浙江电力|基于数据扩充与无阈值递归图的非侵入式负荷识别方法

基于数据扩充与无阈值递归图的非侵入式负荷识别方法

邢海青 郭瑞峰 杨浙川 熊小雨 施永涛

浙江电力2024,Vol.43Issue(6):88-100,13.
浙江电力2024,Vol.43Issue(6):88-100,13.DOI:10.19585/j.zjdl.202406010

基于数据扩充与无阈值递归图的非侵入式负荷识别方法

A non-intrusive load identification method based on data augmentation and threshold-free recurrence plot

邢海青 1郭瑞峰 1杨浙川 1熊小雨 1施永涛2

作者信息

  • 1. 国网浙江杭州市余杭区供电公司,杭州 311121
  • 2. 杭州电子科技大学 自动化学院,杭州 310018
  • 折叠

摘要

Abstract

Non-intrusive load monitoring(NILM)not only makes the flow of electric energy transparent but also sim-plifies the installation process of smart meters,effectively reducing the cost of load monitoring.To enhance the accu-racy of load recognition in NILM,a method for load recognition based on data augmentation and threshold-free re-currence plot(RP)is proposed.a denoising diffusion probability model(DDPM)is utilized to augment the load data of small samples to enhance the robustness of the load recognition method.Furthermore,a threshold-free RP,achieved by removing the Heaviside function of the recurrence graph,efficiently represents load characteristics.This is combined with a Transformer deep learning network to construct a load recognition framework.The proposed method is applied to three real-world datasets,and experimental results demonstrate its effectiveness in improving load recognition accuracy and enhancing classification performance.

关键词

非侵入式负荷监测/数据扩充/负荷识别/深度学习/递归图

Key words

NILM/data augmentation/load identification/deep learning/RP

引用本文复制引用

邢海青,郭瑞峰,杨浙川,熊小雨,施永涛..基于数据扩充与无阈值递归图的非侵入式负荷识别方法[J].浙江电力,2024,43(6):88-100,13.

基金项目

浙江省重点研发计划(2021C01144) (2021C01144)

浙江大有集团有限公司科技项目(2021-DY16) (2021-DY16)

浙江电力

OACSTPCD

1007-1881

访问量0
|
下载量0
段落导航相关论文