| 注册
首页|期刊导航|铸造|基于双向加权特征融合网络的铸件内部缺陷检测方法

基于双向加权特征融合网络的铸件内部缺陷检测方法

王蕾 贺万山 张泽琳 夏绪辉

铸造2024,Vol.73Issue(6):843-851,9.
铸造2024,Vol.73Issue(6):843-851,9.

基于双向加权特征融合网络的铸件内部缺陷检测方法

Casting Internal Defect Detection Method Based on Bidirectional Weighted Feature Fusion Network

王蕾 1贺万山 1张泽琳 1夏绪辉1

作者信息

  • 1. 武汉科技大学冶金装备及其控制教育部重点实验室,湖北武汉 430081||武汉科技大学机械传动与制造工程湖北省重点实验室,湖北武汉 430081
  • 折叠

摘要

Abstract

Aiming at the problems of small internal defects,weak contrast and low efficiency of manual recognition in the process of X-ray nondestructive testing,a method of casting internal defects detection based on bi-weighted feature fusion network was proposed.Based on the YOLOv5 network model,an improved coordinate attention module(NCA)was introduced to improve the learning ability of the network for irregular defects and minor defects.Bidirectional feature pyramid network(BiFPN)was introduced to replace the original path aggregation network(PANet)to achieve multi-scale efficient fusion of defect features,and EIoU Loss regression loss function was used to improve the accuracy of defect boundary frame location.The experimental results showed that the proposed method had good performance in detecting small targets and weak contrast defects in the castings.

关键词

铸件/缺陷检测/深度学习/注意力模块/双向加权特征融合

Key words

castings/defect detection/deep learning/attention module/bidirectional weighted feature fusion

分类

矿业与冶金

引用本文复制引用

王蕾,贺万山,张泽琳,夏绪辉..基于双向加权特征融合网络的铸件内部缺陷检测方法[J].铸造,2024,73(6):843-851,9.

基金项目

国家自然科学基金面上项目(52275503) (52275503)

湖北省重点研发计划项目(2022BAD102,2023BAB048). (2022BAD102,2023BAB048)

铸造

OACSTPCD

1001-4977

访问量0
|
下载量0
段落导航相关论文