类风湿关节炎达标治疗人群临床特点及风险因素评估预测模型建立与验证OA北大核心CSTPCD
Clinical Characteristics of the Target Treatment Population with Rheumatoid Arthritis and Establishment and Validation of Related Risk Factors Assessment and Prediction Models
目的 通过分析真实世界研究中达标治疗人群的临床特点,筛选影响达标治疗的独立危险因素,建立并验证中国类风湿关节炎(RA)患者临床达标治疗的评估预测模型.方法 纳入2015年1月-2021年12月于国内10家医院就诊的类风湿关节炎患者3 310例,均为接受传统改善病情的抗风湿药物治疗的患者.从中筛选出进入队列规范随访24周且有完整临床资料的患者876例.采用单因素及多因素逻辑(Logistic)回归分析,筛选出影响治疗结局达标,28处关节疾病活动度评估(DAS)-红细胞沉降率(ESR)评分<2.6的患者群体的独立危险因素.采用最小绝对收缩和选择算法构建达标结局风险预测诺模图;自助抽样法内部验证一致性指数(C-index)、校准图(calibration)、决策曲线分析(DCA),对预测模型的准确性、稳定性等方面进行验证和评估.结果 (1)单因素非参数检验、卡方检验及多因素Logistic回归分析筛选出体重指数、患者休息痛自评、血红蛋白、遇寒加重、肢体麻木、少气乏力6个变量为RA达标治疗的独立危险因素.(2)R语言构建风险预测的诺模图,并通过内部抽样验证,计算出C-index=0.712;通过多因素构建受试者工作特征曲线,曲线下面积=0.729,说明模型具有良好的区分性.(3)calibration校准图形中标准曲线与校准预测曲线贴合,表明模型的校准度良好;霍斯默莱梅肖拟合度检验DCA曲线显示模型具有良好的潜在临床应用价值.结论 本研究建立的临床预测模型有助于医生在基线期及早识别影响RA患者达标治疗结局的风险因素,从而能够及时采取更加积极地治疗策略进行干预,以获得更好的临床治疗效果.
Objective To screen independent risk factors that affect standard treatment by analyzing the clinical characteristics of standard treatment populations in real-world studies,and to establish and validate an evaluation and prediction model for clinical standard treatment in Chinese rheumatoid arthritis(RA)patients.Methods A total of 3 310 RA patients admitted to 10 domestic hospitals from January 2015 to December 2021 were included.All received traditional antirheumatic drugs to improve their conditions.A total of 876 patients with complete clinical follow-up data were selected and enrolled in the cohort for 24 weeks.Univariate and multivariate Logistic regression analyses were used to screen out independent risk factors affecting the treatment outcome[Disease Activity Score-erythrocyte sedimentation rate(DAS28-ESR)<2.6].Least absolute shrinkage and selection operator(LASSO)regression was used to construct the Normogram for predicting the risk of reaching the target outcome using the minimum absolute shrinkage and selection algorithm.Using Bootstrap internal verification concordance index(C-index),calibration graph and decision curve analysis(DCA),the accuracy and stability of the prediction model were verified and evaluated.Results(1)Univariate non-parametric test,Chi-square test,and multivariate Logistic regression analysis identified six independent risk factors for achieving RA treatment,including body mass index,self-assessment of rest pain,hemoglobin,exacerbation of cold exposure,limb numbness,short breath and fatigue.(2)R language constructed the Normogram of risk prediction.C-index=0.712 was calculated by internal sampling verification.The receiver operating characteristic curve was constructed by multiple factors,and the area under the curve=0.729 indicated that the model had good differentiation.(3)The Calibration curve fitted with the calibration prediction curve,which indicated that the calibration degree of the model was good.Hosmer-Lemeshow fit test of DCA curve showed that the model had good potential clinical application value.Conclusion This clinical prediction model was helpful for doctors to identify early risk factors affecting the standard treatment outcomes of RA patients in the baseline period,thus to intervene with timely and active treatment strategies and obtain better clinical treatment effects.
郭梦如;何东仪;汪荣盛;杜星辰;李晖;姜婷;范晓蕾;章渊源;沈杰;朱琦;薛愉
上海中医药大学附属光华医院关节内一科(上海 200052)复旦大学附属华山医院风湿免疫科(上海 200040)上海市长宁区卫生健康委员会(上海 200050)上海中医药大学附属光华医院关节内二科(上海 200052)上海中医药大学附属光华医院信息科(上海 200052)上海市中医药研究院中西医结合关节炎研究所(上海 200052)上海中医药大学附属光华医院风湿病科(上海 200052)
类风湿关节炎达标治疗风险预测模型模型验证真实世界研究
rheumatoid arthritisstandard treatmentrisk prediction modelmodel verificationreal-world study
《中国中西医结合杂志》 2024 (006)
684-691 / 8
国家中医药管理局区域中医(专科)诊疗中心建设项目(No.2018-2022);上海市卫健委华东片区中西医结合关节病专科联盟项目(No.2021.12-2023.12);上海市中医专科联盟建设项目(No.ZY[2018-2020]-FWTX-4017);上海市名老中医学术经验研究工作室建设项目(No.SHGZS-202220);上海市治未病技术处方项目(No.ZY[2021-2023]-0104-02-GF-05);上海市卫生健康委员会科研项目(No.20224 Y0330)
评论