消费行为数据采集平台的安全保障与预测模型研究OA北大核心CSTPCD
依据用户浏览记录等信息进行兴趣爱好的预测并进行合理推荐,已成为诸多销售平台优化用户体验的常用手段,而用户信息安全问题自然也成了各大平台面临的一大挑战.提出一种基于内生安全的消费行为数据采集与分析平台,通过采集用户数据,使用基于长短时记忆网络的预测模型,精准预测未来销售流量数据.在数据安全性方面,平台使用基于内生安全的拟态云WAF,通过动态选择算法、异构执行体和裁决算法3种核心技术为整个数据平台提供了自主可控的安全保障,并利用基于Sketch的网络测量技术对异常流量进行了检测.此外,平台融合了数据备份和恢复、加密存储、数据传输加密技术,并对重要的数据采取分类存储、访问控制等措施.多项对比实验验证表明,用于中烟销售流量的预测平台相较于目前提出的多种技术在预测准确度和数据安全方面都有显著提升,可为企业销量预测提供一种合理可行的解决方案.
李健俊;汪华文;董惠良;陈翔;
浙江中烟工业有限责任公司,杭州310030浙江大学计算机科学与技术学院,杭州350001
计算机与自动化
销量预测长短时记忆网络内生安全拟态云数据采集
《信息安全研究》 2024 (007)
P.649-657 / 9
评论