| 注册
首页|期刊导航|CSEE Journal of Power and Energy Systems|Convolution Neural Network-based Load Model Parameter Selection Considering Short-term Voltage Stability

Convolution Neural Network-based Load Model Parameter Selection Considering Short-term Voltage Stability

Ying Wang Chao Lu Xinran Zhang

CSEE Journal of Power and Energy Systems2024,Vol.10Issue(3):P.1064-1074,11.
CSEE Journal of Power and Energy Systems2024,Vol.10Issue(3):P.1064-1074,11.DOI:10.17775/CSEEJPES.2021.02580

Convolution Neural Network-based Load Model Parameter Selection Considering Short-term Voltage Stability

Ying Wang 1Chao Lu 2Xinran Zhang3

作者信息

  • 1. School of Technology,Beijing Forestry University,Beijing 100083,China IEEE
  • 2. State Key Laboratory of Control and Simulation of Power System and Generation Equipment,Tsinghua University,Beijing 100084,China IEEE
  • 3. School of Automation Science and Electrical Engineering,Beihang University,Beijing 100083,China IEEE
  • 折叠

摘要

关键词

Ambient signal/CNN/field PMU data/load model parameter selection/short-term voltage stability

分类

信息技术与安全科学

引用本文复制引用

Ying Wang,Chao Lu,Xinran Zhang..Convolution Neural Network-based Load Model Parameter Selection Considering Short-term Voltage Stability[J].CSEE Journal of Power and Energy Systems,2024,10(3):P.1064-1074,11.

基金项目

supported by the National Natural Science Foundation of China(U2066601,U1766214). (U2066601,U1766214)

CSEE Journal of Power and Energy Systems

OACSTPCDEI

2096-0042

访问量0
|
下载量0
段落导航相关论文