| 注册
首页|期刊导航|福建电脑|生成对抗网络在表面缺陷生成中的应用

生成对抗网络在表面缺陷生成中的应用

刘日仙

福建电脑2024,Vol.40Issue(7):37-40,4.
福建电脑2024,Vol.40Issue(7):37-40,4.DOI:10.16707/j.cnki.fjpc.2024.07.007

生成对抗网络在表面缺陷生成中的应用

Application of Generative Adversarial Network in Surface Defect Generation

刘日仙1

作者信息

  • 1. 金华职业技术学院信息工程学院 浙江 金华 321017
  • 折叠

摘要

Abstract

The object detection algorithm based on deep learning is widely used in the field of industrial product surface defect detection,but the constructed model requires a large amount of labeled product defect data.To reduce the cost of obtaining defect data,this paper proposes a surface defect generation algorithm based on generative adversarial networks.Through this algorithm,defect data that is closer to the true distribution can be generated.The experimental results show that the generated defect images are very realistic and contain a certain degree of discriminability.Using them as samples to participate in defect detection model training can produce regularization effects,thereby improving the robustness and generalization ability of defect detection.

关键词

产品缺陷/表面缺陷检测/数据增强/缺陷生成算法

Key words

Product Defects/Surface Defect Detection/Data Augmentation/Defect Generation Algorithm

分类

信息技术与安全科学

引用本文复制引用

刘日仙..生成对抗网络在表面缺陷生成中的应用[J].福建电脑,2024,40(7):37-40,4.

基金项目

本文得到浙江省教育厅项目(No.Y201941616)资助. (No.Y201941616)

福建电脑

1673-2782

访问量0
|
下载量0
段落导航相关论文