|国家科技期刊平台
首页|期刊导航|广西医科大学学报|机器学习预测急性上消化道出血患者干预及再出血的风险价值

机器学习预测急性上消化道出血患者干预及再出血的风险价值OACSTPCD

The value of predicting intervention and rebleeding risk for patients with acute upper gastro-intestinal bleeding based on machine learning

中文摘要英文摘要

目的:探讨机器学习(ML)对急性上消化道出血(AUGIB)患者输血干预及再出血的预测价值.方法:回顾性分析2020年7月至2023年10月云南省第三人民医院收治的512例AUGIB患者的临床资料.采用极端梯度提升树(XGBoost)进行变量重要度分析,将筛选得到的重要度排名前10项的因素作为模型中的变量;使用logistic回归、XGBoost、随机森林、支持向量机(SVM)及K近邻算法(KNN)进行分类预测并对比,选取最佳模型并采用SHAP图对ML筛选出的特征进行可解释性分析;并用最佳模型与临床常用AUGIB评分系统进行比较,评估临床价值.结果:XGBoost算法模型中输血干预危险因素得分前10项分别为血红蛋白、国际标准化比值(INR)、白蛋白、收缩压、尿素、麻醉风险评分、脉搏、肌酐、年龄、是否休克.利用以上重要特征进行建模,XGBoost预测AUGIB患者输血干预效果最好,得分最高,即能够尽可能找出更多发生消化道出血进行输血干预的患者,且优于临床常用格拉斯哥—布拉奇福德出血评分(GBS)、AIMS65、ABC及T评分系统.通过XGBoost算法模型中再出血患者重要特征得分前10项为年龄、肌酐、INR、血红蛋白、麻醉风险评分、白蛋白、收缩压、尿素、肝硬化、性别.利用得分排前10的危险因素进行建模,XGBoost预测AUGIB患者再出血的效果最佳,且优于以上4种评分系统.结论:在预测AU-GIB患者输血干预及再出血的价值中,ML模型优于GBS、AIMS65、ABC及T评分系统;XGBoost模型算法更佳,具有更好的有效性.

Objective:To investigate the value of machine learning(ML)in predicting blood transfusion inter-vention and rebleeding in patients with acute upper gastrointestinal bleeding(AUGIB).Methods:A retrospective analysis was conducted on the clinical data of 512 AUGIB patients who were admitted to the Third People's Hos-pital of Yunnan Province from July 2020 to October 2023.Variable importance analysis was performed using eX-treme gradient boosting(XGBoost),and the top 10 factors in importance ranking were selected as variables in the model.Classification predictions were carried out and compared using logistic regression,XGBoost,random for-est,support vector machine(SVM),and K-nearest neighbors algorithms(KNN).The best model was chosen,and interpretable analysis of the features selected by ML was performed using SHAP plots.The clinical value was as-sessed by comparing the best model with the commonly used AUGIB scoring systems.Results:The XGBoost al-gorithm model identified the top 10 risk factors for transfusion intervention as hemoglobin,international normal-ized ratio(INR),albumin,systolic blood pressure,urea,anesthesia risk score,pulse,creatinine,age,and presence of shock.Using these important features for modeling,the XGBoost algorithm provided the best predictive per-formance for transfusion intervention in AUGIB patients and it achieved the highest score,indicating its superior ability to identify patients at risk for gastrointestinal bleeding who required transfusion intervention,and outper-forming the common clinical Glasgow Blatchford(GBS),AIMS65,ABC,and T scoring systems.According to the XGBoost algorithm model,the top 10 important features scores for patients with rebleeding were age,creati-nine,INR,hemoglobin,anesthesia risk score,albumin,systolic blood pressure,urea,liver cirrhosis,and gender.Modeling with these top 10 risk factors,the XGBoost algorithm also showed the best predictive performance for re-bleeding in AUGIB patients,surpassing the aforementioned four scoring systems.Conclusion:In predicting the value of transfusion intervention and rebleeding in AUGIB patients,ML model is superior to GBS,AIMS65,ABC and T scoring systems.The XGBoost model algorithm is superior,with better effectiveness.

刘界宇;黄继华;李泗云;吉玉屏;刘中建;张帆

大理大学医学院,大理 671000||云南省第三人民医院 大理大学第二附属医院消化内科,昆明 650000云南省第三人民医院 大理大学第二附属医院消化内科,昆明 650000云南省第一人民医院 基础和临床医学研究所,昆明 650034

临床医学

机器学习极限梯度提升算法急性上消化道出血风险评估

machine learningeXtreme gradient boostingacute upper gastrointestinal bleedingrisk assessment

《广西医科大学学报》 2024 (005)

748-755 / 8

云南省"兴滇英才支持计划"名医资助项目(No.XDYC-MY-2022-0007);云南省科技厅科技计划项目(No.202301AY070001-225;No.202301AU070131)

10.16190/j.cnki.45-1211/r.2024.05.016

评论