| 注册
首页|期刊导航|测试技术学报|基于CNN-LSTM-SE的心电图分类算法研究

基于CNN-LSTM-SE的心电图分类算法研究

王建荣 邓黎明 程伟 李国翚

测试技术学报2024,Vol.38Issue(3):264-273,10.
测试技术学报2024,Vol.38Issue(3):264-273,10.DOI:10.3969/j.issn.1671-7449.2024035

基于CNN-LSTM-SE的心电图分类算法研究

Study on ECG Classification Algorithm Based on CNN-LSTM-SE

王建荣 1邓黎明 2程伟 2李国翚3

作者信息

  • 1. 天津大学 智能与计算学部,天津 300000||山西大学 自动化与软件学院,山西 太原 030000
  • 2. 山西大学 自动化与软件学院,山西 太原 030000
  • 3. 天津开发区奥金高新技术有限公司 产品研发部,天津 300000
  • 折叠

摘要

Abstract

Cardiovascular disease is one of the diseases with high mortality rate in China.Monitoring elec-trocardiograms to determine if there are abnormalities in the electrical signals of the heart can be used to prevent and screen for cardiovascular disease.Due to the large scale and complexity of electrocardiogram data,clinical medical staff have a heavy workload and are prone to misdiagnosis or missed diagnosis dur-ing electrocardiogram screening.In order to improve the screening efficiency of electrocardiogram and reduce the pressure on medical staff,a model based on convolutional neural network,long and short-term memory neural network and SE network(CNN-LSTM-SE)was proposed to divide electrocardiogram into five categories.The main research contents include:MIT-BIH arrhythmia data set is selected as the data source of ECG signals,Butterworth bandpass filter is used to de-noise ECG signals,Z-score method is used to standardize ECG signals,and unique thermal coding method is used to encode ECG labels.Finally,the proposed algorithm model is trained and tested using the processed ECG data.The experi-mental results show that compared with other models,the proposed model can effectively improve the accuracy of ECG classification,and the classification accuracy of the experimental data set reaches 99.1%.

关键词

心律失常/心电图/卷积神经网络/SE网络/长短期记忆神经网络

Key words

arrhythmia/electrocardiogram/convolutional neural network(CNN)/SE net/long and short term memroy neural network(LSTM)

分类

医药卫生

引用本文复制引用

王建荣,邓黎明,程伟,李国翚..基于CNN-LSTM-SE的心电图分类算法研究[J].测试技术学报,2024,38(3):264-273,10.

基金项目

国家重点研发计划资助项目(2018YFC2000701) (2018YFC2000701)

中国博士后科学基金资助项目(2021M692400) (2021M692400)

山西省基础研究计划资助项目(202203021221017) (202203021221017)

测试技术学报

OACSTPCD

1671-7449

访问量0
|
下载量0
段落导航相关论文