| 注册
首页|期刊导航|测试技术学报|改进YOLOv5的无人机小目标检测算法

改进YOLOv5的无人机小目标检测算法

李松林 江剑

测试技术学报2024,Vol.38Issue(4):354-362,9.
测试技术学报2024,Vol.38Issue(4):354-362,9.DOI:10.3969/j.issn.1671-7449.2024046

改进YOLOv5的无人机小目标检测算法

Improved UAV Small Object Detection Algorithm Based on YOLOv5

李松林 1江剑1

作者信息

  • 1. 南京理工大学 机械工程学院,江苏 南京 210094
  • 折叠

摘要

Abstract

The detection of small-scale targets,characterized by limited available features and unclear tex-tures,has perennially posed a challenge in the field of object detection.To address issues related to false positives and false negatives unmanned aerial vehicle(UAV)targets,we propose an improved UAV small-target detection algorithm,termed LASD-YOLOv5.This algorithm introduces a polarized self-attention mechanism to more accurately extract minute features,incorporates a weighted bidirectional fea-ture pyramid network to replace the path aggregation network,thus enhancing the utilization of low-level features.Furthermore,it decouples the detection head to expedite model convergence.Additionally,to tackle the scarcity of small targets and incomplete scene coverage in existing UAV small-target datasets,we contribute a multi-scene,low-speed,small UAV target dataset(LASD-D).The experimental results demonstrate that our proposed algorithm achieves an average precision of 98.29%in LASD-D,surpass-ing the baseline network by 2.87%.Notably,it outperforms mainstream algorithms such as YOLOv7、YOLOv8 and QueryDet,effectively meeting the demands of UAV small-target detection applications.

关键词

小目标检测/无人机/注意力机制/特征融合/YOLOv5

Key words

small object dtection/UAV/attention mechanism/feature fusion/YOLOv5

分类

信息技术与安全科学

引用本文复制引用

李松林,江剑..改进YOLOv5的无人机小目标检测算法[J].测试技术学报,2024,38(4):354-362,9.

测试技术学报

OACSTPCD

1671-7449

访问量0
|
下载量0
段落导航相关论文