| 注册
首页|期刊导航|测试技术学报|基于Swin Transformer和双层路由注意力的多标签图像分类算法

基于Swin Transformer和双层路由注意力的多标签图像分类算法

张震 王贺 宋宏旭

测试技术学报2024,Vol.38Issue(4):413-419,7.
测试技术学报2024,Vol.38Issue(4):413-419,7.DOI:10.3969/j.issn.1671-7449.2024053

基于Swin Transformer和双层路由注意力的多标签图像分类算法

Multi-Label Image Classification Algorithm Based on Transformer

张震 1王贺 1宋宏旭1

作者信息

  • 1. 山西大学 物理电子工程学院,山西 太原 030006
  • 折叠

摘要

Abstract

Image classification is a basic and important direction in image processing.Since there is not only a single label value on an image,the current image classification can no longer meet people's needs,and multi-label image classification came into being.This paper proposes a multi-label image classification framework using Swin Transformer for feature extraction and a two-layer routing attention module for fea-ture processing.Swin Transformer extracts multi-scale information through a hierarchical structure,and is superior to Vision Transformer in terms of multi-target and finer-grained image recognition.The dual-layer routing attention module enables more flexible computation allocation and content awareness.The dynamic attention mechanism adaptively adjusts the attention weight according to the characteristics of the input image,so that different positions or features can be given different levels of attention,and the inten-sity and range of attention can be flexibly controlled by adjusting the dynamic attention.The average preci-sion of the model on the COCO dataset is 87.3,and the average precision on the VOC2007 dataset is 96.7,which improves the accuracy of multi-label image classification to a certain extent.

关键词

深度学习/多标签分类/Swin Transformer/双层路由注意力模块

Key words

deep learning/multi-label image classification/swin transformer/bi-level routing attention

分类

信息技术与安全科学

引用本文复制引用

张震,王贺,宋宏旭..基于Swin Transformer和双层路由注意力的多标签图像分类算法[J].测试技术学报,2024,38(4):413-419,7.

测试技术学报

OACSTPCD

1671-7449

访问量0
|
下载量0
段落导航相关论文