| 注册
首页|期刊导航|计算机与数字工程|基于重参数化的超分辨率重建

基于重参数化的超分辨率重建

田蕾 申艺

计算机与数字工程2024,Vol.52Issue(4):1110-1114,5.
计算机与数字工程2024,Vol.52Issue(4):1110-1114,5.DOI:10.3969/j.issn.1672-9722.2024.04.026

基于重参数化的超分辨率重建

Super-resolution Reconstruction Based on Re-parameterization

田蕾 1申艺2

作者信息

  • 1. 北京跟踪与通信技术研究所 北京 100094
  • 2. 南京航空航天大学 南京 210000
  • 折叠

摘要

Abstract

In view of the contradiction between the speed and accuracy of the existing single image super-resolution(SISR)model,this paper presents a lightweight re-parameterization model for image realization reconstruction.The model is trained to en-sure accuracy by using a model with a more complex structure,and the model is equivalently transformed into a simple convolution to improve the speed during inference.At the same time,the addition of a multi-supervisory structure makes the model converge faster and more flexible.The quality and efficiency of the reconstruction model are evaluated by the peak signal-to-noise ratio and structural similarity.It is verified that the proposed model has the advantages of light weight and good reconstruction quality in the existing super-resolution reconstruction methods.

关键词

单图像超分辨率/卷积神经网络/多监督学习/重参数化

Key words

single image super-resolution/convolutional neural network/multi-supervised learning/re-parameterization

分类

信息技术与安全科学

引用本文复制引用

田蕾,申艺..基于重参数化的超分辨率重建[J].计算机与数字工程,2024,52(4):1110-1114,5.

基金项目

国家自然科学基金项目(编号:61803199,U2033201)资助. (编号:61803199,U2033201)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文