| 注册
首页|期刊导航|计算机与数字工程|基于PSO-BP的岩性识别方法研究

基于PSO-BP的岩性识别方法研究

高雅田 杨俊国

计算机与数字工程2024,Vol.52Issue(4):1119-1124,6.
计算机与数字工程2024,Vol.52Issue(4):1119-1124,6.DOI:10.3969/j.issn.1672-9722.2024.04.028

基于PSO-BP的岩性识别方法研究

Research on Lithology Identification Method Based on PSO-BP

高雅田 1杨俊国1

作者信息

  • 1. 东北石油大学计算机与信息技术学院 大庆 163318
  • 折叠

摘要

Abstract

In recent years,data analysis and deep learning technology have made great progress and brought considerable ben-efits to the society.Therefore,the use of deep learning method for lithology identification has become a research hotspot.Lithology identification is the core business of logging interpretation,accurate and effective prediction of reservoir properties is of great signifi-cance to petroleum exploration.However,the traditional lithology identification scheme has some disadvantages,such as high cost,long time and so on.Therefore,this paper uses the logging data of some wells in Songliao basin to study the model,after comparing the lithology identification results of different algorithms,a lithology identification method based on PSO-BP is proposed.Through data preprocessing of logging source data,construction of network identification model,optimization of lithology identification mod-el and evaluation of model output,the lithology identification method based on PSO-BP is realized.After repeated tests,the results show that the average accuracy of lithology identification using PSO-BP method can reach 92.2%,which provides a reliable support for reservoir prediction.

关键词

BP神经网络/粒子群优化算法/岩性识别/数据预处理/KNN/支持向量机

Key words

BP neural network/PSO/lithology identification/data preparation/KNN/SVM

分类

信息技术与安全科学

引用本文复制引用

高雅田,杨俊国..基于PSO-BP的岩性识别方法研究[J].计算机与数字工程,2024,52(4):1119-1124,6.

基金项目

东北石油大学校培育基金项目(编号:PY120225)资助. (编号:PY120225)

计算机与数字工程

OACSTPCD

1672-9722

访问量2
|
下载量0
段落导航相关论文