| 注册
首页|期刊导航|计算机与数字工程|基于双稀疏分解的复杂图像Canny边缘检测

基于双稀疏分解的复杂图像Canny边缘检测

孟青青 李登峰 肖文韬

计算机与数字工程2024,Vol.52Issue(4):1164-1168,1234,6.
计算机与数字工程2024,Vol.52Issue(4):1164-1168,1234,6.DOI:10.3969/j.issn.1672-9722.2024.04.036

基于双稀疏分解的复杂图像Canny边缘检测

Canny Edge Detection of Complex Image Based on Double Sparse Decomposition

孟青青 1李登峰 2肖文韬1

作者信息

  • 1. 武汉纺织大学计算机与人工智能学院 武汉 430200
  • 2. 武汉纺织大学数理科学学院 武汉 430200
  • 折叠

摘要

Abstract

In the edge detection of complex images,how to eliminate the influence of non-coherent factors has always been the focus and difficulty of research.To solve the above problems,a double sparse decomposition method is proposed to separate the high-frequency feature vectors with strong interference in the image data.This method uses the Nonsubsampled Contourlet transform to pre-decompose the image,and then performs K-Singular Value Decomposition dictionary learning on the high-frequency compo-nents,and uses the obtained learning dictionary to sparse the image.According to the dictionary atom activity corresponding to the sparse coefficient.The image is decomposed into high and low frequency parts.And the Canny edge detection algorithm is im-proved,using the double sparse method to decompose the complex image to obtain the low frequency part,and then the Canny edge detection is performed on the purer low frequency image.Simulation experiments show that the sparse decomposition efficiency of the double sparse method is higher,and the Canny edge detection result combined with the double sparse method is clearer and more complete.

关键词

稀疏表示/学习字典/K-奇异值分解/轮廓波变换/边缘检测

Key words

sparse representation/learning dictionary/K-Singular Value Decomposition(K-SVD)/contourlet transform/edge detection

分类

信息技术与安全科学

引用本文复制引用

孟青青,李登峰,肖文韬..基于双稀疏分解的复杂图像Canny边缘检测[J].计算机与数字工程,2024,52(4):1164-1168,1234,6.

基金项目

国家自然科学基金项目"稀疏框架与相关问题研究"(编号:61471410)资助. (编号:61471410)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文