| 注册
首页|期刊导航|计算机与数字工程|基于深度学习和高斯混合模型的异常识别算法

基于深度学习和高斯混合模型的异常识别算法

范冰 李鹏 金舒 王志心 王媛媛

计算机与数字工程2024,Vol.52Issue(4):989-994,6.
计算机与数字工程2024,Vol.52Issue(4):989-994,6.DOI:10.3969/j.issn.1672-9722.2024.04.006

基于深度学习和高斯混合模型的异常识别算法

Anomaly Detection Algorithm Based on Deep Learning and Gaussian Mixture Model

范冰 1李鹏 1金舒 1王志心 1王媛媛1

作者信息

  • 1. 国电南京自动化股份有限公司研究院系统自动化技术与应用研究所 南京 210000
  • 折叠

摘要

Abstract

Current approaches for anomaly detection cannot tackle both human-related abnormal behavior recognition and non-human anomaly recognition.Moreover,the detection accuracy is low especially in the case of occlusion.To solve this problem,the network based on GRU is proposed to train the structural feature segments of the human body posture in the normal frame.In do-ing so,this approach is able to anti-occlusion.This paper further introduces an improved Gaussian mixture model with adaptive K value to extract abnormal situations(such as cars,bicycles,remnants,etc.)that are not related to human.Experiments show that the anomaly detection AUC of proposed method increased by 0.025 and 0.034 on Avenue dataset and ShanghaiTech dataset respec-tively.

关键词

高斯混合模型/异常行为识别/片段化训练/抗遮挡

Key words

Gaussian mixture model/abnormal behavior recognition/segment training/anti-occlusion

分类

信息技术与安全科学

引用本文复制引用

范冰,李鹏,金舒,王志心,王媛媛..基于深度学习和高斯混合模型的异常识别算法[J].计算机与数字工程,2024,52(4):989-994,6.

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文