| 注册
首页|期刊导航|宁夏电力|基于CNN-XGBoost模型的光伏功率预测

基于CNN-XGBoost模型的光伏功率预测

李佳怡 张生艳 贺洁

宁夏电力Issue(3):8-13,20,7.
宁夏电力Issue(3):8-13,20,7.DOI:10.3969/j.issn.1672-3643.2024.03.002

基于CNN-XGBoost模型的光伏功率预测

Photovoltaic power prediction based on a combined CNN-XGBoost model

李佳怡 1张生艳 1贺洁2

作者信息

  • 1. 国网宁夏电力有限公司经济技术研究院,宁夏 银川 750001
  • 2. 国网宁夏电力有限公司银川供电公司,宁夏 银川 750011
  • 折叠

摘要

Abstract

To enhance the accuracy of photovoltaic power forecasts,this study begins with data preprocessing,which involves missing values and normalization.Pearson correlation coefficient is then used to analyze meteorological factors that best correlate with photovoltaic power,thereby reducing the model's input dimensions and complexity.Finally,a combined predictive model is tested using a convolutional neural network and extreme gradient boosting(CNN-XGBoost)model.The test results show that the proposed model successfully enhances the accuracy of photovoltaic power forecasts by significantly reducing the root-mean-square error in predictions.

关键词

光伏功率预测/卷积神经网络/梯度提升决策树/组合预测模型

Key words

photovoltaic power prediction/convolutional neural network/gradient boosting decision tree/combined predictive model

分类

信息技术与安全科学

引用本文复制引用

李佳怡,张生艳,贺洁..基于CNN-XGBoost模型的光伏功率预测[J].宁夏电力,2024,(3):8-13,20,7.

基金项目

国网宁夏电力有限公司科技项目(5229JY22000M) (5229JY22000M)

宁夏电力

1672-3643

访问量0
|
下载量0
段落导航相关论文