高性能有机太阳能电池宽带隙聚合物给体材料研究进展OACSTPCD
Advances in high-performance wide bandgap polymer donor materials for organic photovoltaic cells
随着光伏材料的不断革新,有机光伏(OPV)电池的能量转换效率(PCE)已经接近20%,聚合物给体材料与小分子电子受体材料的开发被认为是提升OPV电池PCE的核心.在众多给体材料中,宽带隙聚合物给体材料因出色的光电特性已占据OPV给体材料的主导地位.为了进一步提高OPV的光伏效率,总结并梳理宽带隙聚合物给体材料的分子结构与其光电特性的关联是必要的.首先,本文总结了聚合物给体材料的光学带隙和分子能级的调控方法;其次,探讨并总结了聚合物溶液聚集效应的调控方法以及与光活性层形貌的关联;再次,强调了降低OPV电池的能量损耗重要性,并讨论了降低其能量损耗的方法;再次,针对当前优秀的宽带隙聚合物给体进行总结;最后,讨论了基于宽带隙聚合物给体的非富勒烯OPV电池商业化实现的机遇和挑战.
With continuous innovation in organic photovoltaic materials,the power conversion efficiency(PCE)of organic photovoltaic(OPV)cells has approached 20%.The development of polymer donors and small molecule acceptors is considered crucial for improving the PCE of OPV cells.Among numerous donor materials,wide bandgap(WBG)polymer donors have dominated the OPV donor material field due to their excellent optoelectronic properties.To further enhance the photovoltaic efficiency of OPV,it is necessary to summarize and elucidate the correlation between the molecular structure and optoelectronic properties of WBG polymer donors.Firstly,this review summarize the methods for controlling the optical bandgap and molecular energy levels of polymer donors.Secondly,we explore and summarize the methods for controlling aggregation behavior of the polymer in solution and their correlation with their bulk heterojunction morphology.Thirdly,we emphasize the importance of reducing the energy losses in OPV cells and discuss methods to reduce these losses.Fourthly,we summarize the-state-of-the-art wide bandgap polymer donors.Finally,we discuss the opportunities and challenges for commercializing non-fullerene OPV cells based on WBG polymer donors.
谢倩;安存彬
首都师范大学化学系,北京 100048
动力与电气工程
有机太阳能电池聚合物给体材料本体异质结
organic photovoltaic cellspolymer donor materialsbulk heterojunction
《首都师范大学学报(自然科学版)》 2024 (003)
52-63 / 12
评论