|国家科技期刊平台
首页|期刊导航|水力发电|基于块分解和循环神经网络的海上升压站智能巡检目标时序配准算法

基于块分解和循环神经网络的海上升压站智能巡检目标时序配准算法OACSTPCD

Intelligent Inspection Target Time-series Registration Algorithm for Offshore Booster Stations Based on Block Decomposition and Recurrent Neural Networks

中文摘要英文摘要

常规海上升压站智能巡检目标时序配准主要依托三角网格表示方法,缺少对图像块能量分布的分析,导致目标配准后离群点的比重较大,配准效果欠佳.为此,提出了基于块分解和循环神经网络的海上升压站智能巡检目标时序配准算法.通过对海上升压站巡检项的分析,采用块分解算法对巡检图像进行分解,检测巡检目标的特征点,并通过提取分解图像块中的高频分量获取图像的能量分布;结合目标特征点的主曲率,计算特征点的标量比例系数,将其与给定阈值相比较,以识别并剔除不稳定极值点;引入循环神经网络求取巡检目标点的质心与特征点之间像元的标准差,由此找出阵列的中心点进行配准.以某实际海上升压站项目为研究背景,对所提方法进行性能验证,结果表明,利用该算法对巡检目标进行时序配准后,得到离群点比重较小,配准效果更好.

The timing registration of intelligent inspection targets for conventional offshore booster stations mainly relies on triangular grid representation methods,but it lacks analysis of the energy distribution of image blocks,resulting in a large proportion of outliers after target registration and poor registration results.To this end,a time-series registration algorithm for intelligent inspection targets of offshore booster stations based on block decomposition and recurrent neural networks is proposed.By analyzing the inspection items of offshore booster stations,the block decomposition algorithm is used to decompose the inspection images,detect the feature points of inspection targets,and extract the high-frequency components in the decomposed image blocks to obtain the energy distribution of images.Combined with the main curvature of target feature points,the scalar scaling coefficient of feature points is calculated,and compared with a given threshold to identify unstable extreme points and remove them.Based on this,a recurrent neural network is introduced to obtain the standard deviation of pixels between the centroid of inspection target point and the feature points,in order to identify the center point of the array for registration.Taking a practical offshore booster station project as the research background,the performance of the proposed method is verified.The results of the example show that,after using the proposed algorithm for temporal registration of inspection targets,the proportion of outliers is smaller and the registration effect is better.

杨林刚;王增光;马润泽;陈永春;周才全

中国电建集团华东勘测设计研究院有限公司,浙江 杭州 310000中国航空工业集团公司洛阳电光设备研究所,河南 洛阳 471000

电子信息工程

块分解循环神经网络巡检目标目标配准配准算法海上升压站

block decompositionrecurrent neural networkinspection targettarget registrationregistration algorithmoffshore booster station

《水力发电》 2024 (007)

101-105 / 5

评论