| 注册
首页|期刊导航|统计与决策|分位数因子增广的分位数自回归分布滞后模型构建

分位数因子增广的分位数自回归分布滞后模型构建

黄玉婷 傅德印

统计与决策2024,Vol.40Issue(12):35-41,7.
统计与决策2024,Vol.40Issue(12):35-41,7.DOI:10.13546/j.cnki.tjyjc.2024.12.006

分位数因子增广的分位数自回归分布滞后模型构建

Construction of Quantile Factor-augmented Quantile Autoregression Distributed Lag Model

黄玉婷 1傅德印2

作者信息

  • 1. 兰州财经大学 统计与数据科学学院,兰州 730020
  • 2. 中国劳动关系学院 劳动经济学院,北京 100048
  • 折叠

摘要

Abstract

Factor-augmented regression is an important method to forecast macroeconomics using high dimensional data.However,the results of factor models and regression models under the mean regression framework are not robust enough in the face of outliers or thick tail distributions.In view of this,the paper constructs a quantile factor-augmented quantile autoregression distributed lag model under quantile regression frame.In this model,the quantile factor model is constructed to reduce the dimen-sionality of high-dimensional data,with the common factors of different quantiles extracted.Further,the quantile autoregressive distributed lag model is constructed by using the extracted common factors and lag terms of response variables.Numerical simula-tion results show that the mean and non-mean factors estimated by quantile factor analysis are more robust in the case of data out-liers or thick tail distribution.The predictive performance of quantile factor-augmented regression is better than that of fac-tor-augmented regression,and the predictive performance of quantile factor-augmented autoregressive distributed lag model is better than that of the benchmark model.

关键词

分位数因子/分位数回归/因子增广回归/自回归分布滞后模型

Key words

quantile factor/quantile regression/factor-augmented regression/autoregressive distributed lag model

分类

管理科学

引用本文复制引用

黄玉婷,傅德印..分位数因子增广的分位数自回归分布滞后模型构建[J].统计与决策,2024,40(12):35-41,7.

基金项目

甘肃省优秀博士生项目(23JRRA1189) (23JRRA1189)

甘肃省研究生"创新之星"项目(2023CXZX-700) (2023CXZX-700)

兰州财经大学博士研究生科研创新项目(2022D02 ()

2022D05) ()

统计与决策

OA北大核心CHSSCDCSSCICSTPCD

1002-6487

访问量0
|
下载量0
段落导航相关论文