| 注册
首页|期刊导航|统计与决策|超高维纵向数据部分线性模型的特征筛选

超高维纵向数据部分线性模型的特征筛选

郭望 杨孝光 周鹏飞 李运明

统计与决策2024,Vol.40Issue(12):46-51,6.
统计与决策2024,Vol.40Issue(12):46-51,6.DOI:10.13546/j.cnki.tjyjc.2024.12.008

超高维纵向数据部分线性模型的特征筛选

Feature Screening for Partially Linear Models With Ultrahigh-dimensional Longitudinal Data

郭望 1杨孝光 2周鹏飞 2李运明1

作者信息

  • 1. 西南交通大学 数学学院,成都 611756||西部战区总医院医疗保障中心信息科,成都 610083
  • 2. 西部战区总医院医疗保障中心信息科,成都 610083
  • 折叠

摘要

Abstract

Feature screening of ultrahigh-dimensional longitudinal data is one of the difficulties of ultrahigh-dimensional feature screening,and the difficulty is to estimate the working correlation coefficient matrix under the premise of ensuring the speed of marginal screening.Under the assumption of partial linear model,this paper takes into account the characteristics of lon-gitudinal data of between-group independence and within-group correlation,and uses sample covariance to estimate the un-known working covariance matrix,proposing a sure independent screening method with profile covariance matrix(PMSIS).The paper also theoretically proves that the method has the sure screening property under certain regularity conditions,and verifies the finite sample properties of the method through Monte Carlo numerical simulation and gut microbiota data.The results show that the new PMSIS method can be used to effectively screen weakly correlated covariates.

关键词

超高维/纵向数据/部分线性模型/特征筛选/确定筛选性质

Key words

ultrahigh dimension/longitudinal data/partially linear model/feature screening/sure screening property

分类

数理科学

引用本文复制引用

郭望,杨孝光,周鹏飞,李运明..超高维纵向数据部分线性模型的特征筛选[J].统计与决策,2024,40(12):46-51,6.

基金项目

全军保健专项科研课题(21BJZ39) (21BJZ39)

西部战区总医院军事医学科研课题(2019ZY10 ()

2021-XZYG-A14) ()

中央高校基础研究培育支持计划项目(2682021ZTPY018) (2682021ZTPY018)

统计与决策

OA北大核心CHSSCDCSSCICSTPCD

1002-6487

访问量0
|
下载量0
段落导航相关论文