|国家科技期刊平台
首页|期刊导航|现代妇产科进展|基于糖代谢相关基因的卵巢癌预后模型的构建及验证

基于糖代谢相关基因的卵巢癌预后模型的构建及验证OACSTPCD

Construction and validation of an ovarian cancer prognostic model based on glycome-tabolism-related gene signature

中文摘要英文摘要

目的:建立糖代谢相关卵巢癌预后和药物反应的预测模型,探讨其临床意义.方法:由ICGC数据库和GSE26712 数据集获取卵巢癌患者的基因表达谱和临床特征数据,从MSigDB中提取并收集糖代谢相关基因与之取交集得到糖代谢相关基因,使用多种算法,筛选出预后相关基因构建模型.对风险模型进行生存分析、基因功能富集分析和药物反应预测,使用cBioPortal在线工具呈现预后相关基因的遗传信息,运用Cytoscape软件显示预后相关基因和糖代谢共表达基因的网络.在正常卵巢组织细胞与上皮性卵巢癌组织细胞中对预后相关基因表达进行差异验证.结果:得到 21 个糖代谢相关基因进行LASSO回归分析,进一步进行多变量Cox回归分析,建立了包括LHPP(HR=1.51,95%CI为1.24~1.83,P<0.001)、PCK2(HR=0.72,95%CI为0.57~0.92,P=0.009)、PPP3CA(HR=1.35,95%CI 为 1.08~1.69,P=0.008)和 NADK(HR=0.68,95%CI 为 0.52~1.89,P=0.005)的最优风险模型.使用cBioPortal在 398 份卵巢癌样本中探索这 4 个基因的遗传信息,提示基因结构域的改变可能影响蛋白的功能,Kaplan-Meier生存分析显示高风险组的总生存率较低风险组差(P<0.0001),ROC 曲线提示模型区分度良好(2 年AUC=0.773、3 年AUC=0.839、4 年AUC=0.852).通过GSE26712 和GSE9891 进一步验证风险评分是卵巢癌患者预后独立危险因素,同时基于GSE9891 数据集的临床信息,对风险评分、病理分级、FIGO分期、年龄等因素进行多因素Cox回归分析,发现该风险评分为独立预后因素(P<0.001).KEGG富集分析提示,高风险评分组介导的生物学功能包括细胞周期、TNF、Hedgehog、DNA 修复等通路,其中细胞周期通路显著富集(P<0.001),糖代谢相关基因主要通过细胞周期途径在卵巢癌的发生和进展中发挥关键作用;高风险组中,多数化疗药物敏感性更低,并基于细胞周期检查点抑制剂的研究发现 4种药物(CGP-60474、BI-2536、CGP-082996 和GW843682X)对高危人群具有较高的反应敏感性.RT-qPCR结果显示,LHPP、PPP3CA和NADK在卵巢癌细胞系(SKOV-3)中较正常卵巢细胞系(OSE)显著上调,PCK2 在SKOV3 细胞系中显著下调.HPA数据库证实在卵巢癌组织中这4 个基因的免疫组化也与RT-qPCR结果呈相同的趋势.结论:本研究建立了基于4 个糖代谢相关基因的卵巢癌风险模型,有助于预测卵巢癌患者的预后、生物学特征和潜在治疗药物,且该模型具有良好的稳定性和预测能力,为卵巢癌的预后提供分子标记物和治疗靶点.

Objective:To establish a prediction model for the prognosis and drug re-sponse of ovarian cancer related to glucose metabolism and explore its clinical significance.Methods:The gene expression profile and clinical characteristics data of ovarian cancer patients were obtained from the ICGC database and GSE26712 data set,and glycometabolism-related genes were extracted and collected from MSigDB and intersected with them to obtain glycome-tabolism-related genes.An algorithm is used to screen out prognosis-related genes to build a model.Survival analysis,gene function enrichment analysis and drug response prediction were performed on the risk model.The cBioPortal online tool was used to present the genetic informa-tion of prognosis-related genes.Cytoscape software was used to display the network of prognosis-related genes and glucose metabolism co-expression genes.Finally,in normal ovarian tissue Dif-ferential verification of prognosis-related gene expression in cells and epithelial ovarian cancer tissue cells.Results:21 genes related to glucose metabolism were obtained for LASSO regres-sion analysis,and further multivariable Cox regression analysis was performed to establish a gene including LHPP(HR=1.51,95%CI:1.24~1.83,P<0.001),PCK2(HR=0.72,95%CI:0.57~0.92,P=0.009),PPP3CA(HR=1.35,95%CI:1.08~1.69,P=0.008)and NADK(HR=0.68,95%CI:0.52~1.89,P=0.005)Optimal risk model.Using cBioPortal to explore the genetic information of these 4 genes in 398 ovarian cancer samples suggested that changes in the gene domain may affect the function of the protein.Kaplan-Meier survival analy-sis showed that the overall survival rate of the high-risk group was lower.Group difference(P<0.0001),the ROC curve indicates that the model has good predictive performance(2-year AUC=0.773,3-year AUC=0.839,4-year AUC=0.852).The risk model is further verified through GSE26712 and GSE9891 to be an independent risk for the prognosis of ovarian cancer patients.Factors,and based on the clinical information of the GSE9891 data set,multi-factor Cox regression analysis was performed on risk score,pathological grade,FIGO stage,age and other factors,and it was found that the risk score was an independent prognostic factor(P<0.001).KEGG enrichment analysis suggested the biological functions mediated by the high-risk score group include cell cycle,TNF,Hedgehog,DNA repair and other pathways.Among them,the cell cycle pathway is significantly enriched(P<0.001).Glucose metabolism-related genes mainly play a role in the development of ovarian cancer through the cell cycle pathway.Play a key role in the occurrence and progression of inflammatory bowel disease;in the high-risk group,most chemotherapy drugs are less sensitive,and research based on cell cycle checkpoint inhibitors found 4 drugs(CGP-60474,BI-2536,CGP-082996 and GW843682X)It has high re-sponse sensitivity for high-risk groups;RT-qPCR results show that LHPP,PPP3CA and NADK are significantly up-regulated in ovarian cancer cell lines(SKOV-3)compared with normal o-varian cell lines(OSE),and PCK2 is significantly up-regulated in SKOV3 cell lines.Signifi-cantly down-regulated;the HPA database confirmed that the immunohistochemistry of these four genes in ovarian cancer tissues also showed the same trend as the RT-qPCR results.Conclu-sion:This study established an ovarian cancer risk model based on 4 glycometabolism-related genes,which is helpful to predict the prognosis,biological characteristics and potential therapeu-tic drugs of ovarian cancer patients.The model has good stability and predictive ability,and is a good tool for ovarian cancer.Molecular markers and therapeutic targets are provided for cancer prognosis.

刘欣悦;韩妍;姚卉;王君霞;索玉平

山西医科大学附属山西省人民医院妇科,太原 030001||长治市人民医院妇科,长治 046000长治市人民医院妇科,长治 046000山西医科大学附属山西省人民医院妇科,太原 030001

临床医学

卵巢癌糖代谢预后模型药敏预测生物信息学

Ovarian cancerGlycometabolism-relatedPrognostic modelDrug sensitiv-ity predictionBioinformatics

《现代妇产科进展》 2024 (007)

517-524 / 8

国家自然科学基金项目(No:61975105);山西省基础研究计划项目(No:202303021212366)

10.13283/j.cnki.xdfckjz.2024.07.007

评论