进化深度学习的研究现状与进展OA北大核心CSTPCD
Research Status and Progress in Evolutionary Deep Learning
近些年,深度学习在工业界和学术界取得了令人瞩目的发展.然而,深度模型的超参数配置通常需要巨大的计算开销和专家知识.进化计算作为一种高效的启发式搜索方式,在深度模型的自动化配置中已经展现出显著的优势,能够有效缓解上述问题,这种方法也被称为进化深度学习.本文从自动机器学习的视角分析进化深度学习.具体来讲,首先结合进化计算和深度学习的特点,阐述进化深度学习的概念和优化模型.在此基础上,从深度学习的生命周期出发,系统地介绍了数据准备、模型生成和模型部署三个阶段的进化深度学习方法.此外,分析并讨论了不同的解表示和搜索范式.最后,本文提供了进化深度学习的相关应用,开放问题及潜在研究方向.本文综述了进化深度学习的最新进展,并为其未来的发展提出了一些指导性的建议.
In recent years,both industry and academia have made significant advances in deep learning(DL).However,configuring the hyperparameters of deep models typically requires significant computational overhead and expert knowledge.To overcome these aforementioned challenges,evo-lutionary computation(EC),as an efficient heuristic search,has demonstrated significant advan-tages in the automated configuration of DL models,i.e.,evolutionary DL(EDL).We describe EDL from the perspective of automated machine learning.Particularly,we first depict the concept of EDL from EC and DL perspectives and regard EDL as an optimization problem.Consequently,we systematically introduce data preparation,model generation,and model deployment from the DL lifecycle.In addition,we analyze and discuss the solution representation and search paradigms.Finally,we provide applications,open issues,and potential research directions related to EDL.This study reviews the advancements in EDL and offers insightful guidelines for its development.
李楠;贺美蕊;马连博
东北大学软件学院,辽宁沈阳 110167
计算机与自动化
进化计算进化深度学习数据准备模型生成模型部署
evolutionary computationevolutionary deep learningdata preparationmodel generationmodel deployment
《信息与控制》 2024 (002)
129-153 / 25
国家自然科学基金项目(62032013,92267206)
评论