|国家科技期刊平台
首页|期刊导航|信息与控制|多源传感器数据下基于注意力机制与长短期记忆网络的轴承故障诊断与寿命预测

多源传感器数据下基于注意力机制与长短期记忆网络的轴承故障诊断与寿命预测OA北大核心CSTPCD

Bearing Fault Diagnosis and Life Prediction Based on Attention Mechanism and Long Short-term Memory Network under Multi-source Sensor Data

中文摘要英文摘要

针对滚动轴承故障在噪声环境下诊断效果不佳的问题,提出了一种多源传感器数据下基于注意力机制与长短期记忆(long short-term memo-ry,LSTM)网络的轴承故障诊断新方法.首先,将多源传感器采集的1维数据进行归一化处理,通过构建带AdaBN(Adaptive Batch Normaliza-tion)技术的双通道孪生卷积网络提取有效特征并进行数据融合.其次,将融合数据输入具有同时考虑通道间关系和位置信息功能的改进1维CoordAtt(Coordinate Attention)中.再次,通过LSTM层提取时间特征,通过标签平滑正则化改进后的损失函数来评估诊断效果,使用新型优化器Adan进行优化.最后,将得到的诊断模型应用于测试集,输出故障类别诊断结果.将模型在不同测试集比例下进行诊断精度对比实验,判断出最佳比例为0.3,并在噪声环境下进行测试.实验结果表明,所提方法能更好地对抗噪声环境的影响.在C-MAPSS数据集上的实验结果验证了 CoordAtt-LSTM模型在寿命预测中的有效性.

To solve the problem of the poor diagnosis effect of rolling bearing faults in noisy environ-ments,we propose a new bearing fault diagnosis method based on an attention mechanism and a long short-term memory(LSTM)network using multisource sensor data.First,we normalize the one-dimensional(1D)data collected by multisource sensors and then construct a double-channel twin convolutional network with adaptive batch normalization technology to extract effective features and perform data fusion.Second,the fusion data are input into the improved 1D coordinate atten-tion(CoordAtt)which is capable of considering the relationship between channels and position in-formation simultaneously.Third,we use the LSTM layer to extract time features and evaluate the diagnosis effect by the loss function after label smoothing regularization.We use the new optimizer Adan for optimization.Finally,the diagnosis model is applied to a test set,and the diagnosis re-sults of fault categories are output.We compare the diagnostic accuracy of the model under differ-ent test set ratios,determine that the optimal ratio is 0.3,and test it in a noisy environment.The experimental results show that the proposed method can better resist the influence of noisy environ-ments.The validity of the CoordAtt-LSTM model in life prediction is verified by experimental re-sults on the C-MAPSS dataset.

陈翔;刘勤明;胡家瑞

上海理工大学管理学院,上海 200093

机械工程

多源传感器数据注意力机制标签平滑正则化故障诊断寿命预测

multi-source sensor dataattention mechanismlabel smoothing regulariza-tionfault diagnosislife prediction

《信息与控制》 2024 (002)

211-225 / 15

国家自然科学基金项目(71632008,71840003);上海市自然科学基金项目(19ZR1435600);教育部人文社会科学研究规划基金项目(20YJAZH068);上海市2021年度"科技创新行动计划"宝山转型发展科技专项(215QBS01404);上海理工大学科技发展项目(2020KJFZ038);2023年上海市大学生创新创业训练计划(SH2023072)

10.13976/j.cnki.xk.2023.3056

评论