| 注册
首页|期刊导航|电子学报|基于稀疏贝叶斯学习的GFDM系统联合迭代信道估计与符号检测

基于稀疏贝叶斯学习的GFDM系统联合迭代信道估计与符号检测

王莹 于永海 郑毅 林彬

电子学报2024,Vol.52Issue(5):1496-1505,10.
电子学报2024,Vol.52Issue(5):1496-1505,10.DOI:10.12263/DZXB.20220480

基于稀疏贝叶斯学习的GFDM系统联合迭代信道估计与符号检测

Iterative Channel Estimation and Symbol Detection for GFDM Systems Based on Sparse Bayesian Learning

王莹 1于永海 1郑毅 1林彬1

作者信息

  • 1. 大连海事大学信息科学技术学院,辽宁大连 116026
  • 折叠

摘要

Abstract

In order to improve the accuracy of time-varying channel estimation in generalized frequency division mul-tiplexing(GFDM)systems,a joint iterative channel estimation and symbol detection algorithm for GFDM systems using sparse Bayesian learning is proposed.Specifically,we use a GFDM multi-response signal model with non-interfering pilot insertion.Under the sparse Bayesian learning framework,we combine the expectation-maximization(EM)algorithm and the Kalman filter and smoothing algorithm to realize the maximum likelihood estimation of the block time-varying channel.Consequently,GFDM symbols are detected based on the estimated channel state information(CSI),and the accuracy of the channel estimation and symbol detection is progressively improved through the iterative processing of the channel estima-tion and symbol detection.Simulation results demonstrate that the proposed algorithm can achieve better bit error rate(BER)performance close to that under perfect CSI conditions,and it has the advantages of fast convergence speed and high robustness to Doppler frequency shift.

关键词

广义频分复用/时变信道估计/稀疏贝叶斯学习/期望最大化/卡尔曼滤波与平滑

Key words

generalized frequency division multiplexing(GFDM)/time-varying channel/sparse Bayesian learning/expectation-maximization(EM)/Kalman filtering and smoothing

分类

信息技术与安全科学

引用本文复制引用

王莹,于永海,郑毅,林彬..基于稀疏贝叶斯学习的GFDM系统联合迭代信道估计与符号检测[J].电子学报,2024,52(5):1496-1505,10.

基金项目

国家重点研发计划(No.2019YFE0111600) (No.2019YFE0111600)

国家自然科学基金(No.61971083,No.51939001) National Key Research and Development Program of China(No.2019YFE0111600) (No.61971083,No.51939001)

National Natural Science Foundation of China(No.61971083,No.51939001) (No.61971083,No.51939001)

电子学报

OA北大核心CSTPCD

0372-2112

访问量0
|
下载量0
段落导航相关论文