| 注册
首页|期刊导航|高技术通讯|一种基于自适应PoT量化的无乘法神经网络训练方法

一种基于自适应PoT量化的无乘法神经网络训练方法

刘畅 张蕊 支天

高技术通讯2024,Vol.34Issue(6):567-577,11.
高技术通讯2024,Vol.34Issue(6):567-577,11.DOI:10.3772/j.issn.1002-0470.2024.06.002

一种基于自适应PoT量化的无乘法神经网络训练方法

Multiplication-free neural network training based on adaptive PoT quantization

刘畅 1张蕊 2支天2

作者信息

  • 1. 中国科学院大学 北京 100049||中国科学院计算技术研究所智能处理器研究中心 北京 100190
  • 2. 中国科学院计算技术研究所智能处理器研究中心 北京 100190||中国科学院计算技术研究所处理器芯片全国重点实验室 北京 100190
  • 折叠

摘要

Abstract

The current deep neural network training process needs a large number of full-precision multiply-accumulate(MAC)operations,resulting in a situation that the energy consumption of the linear layers(including the convolu-tional layer and the fully connected layer)accounts for the vast majority of the overall energy consumption,reac-hing more than 90%.This work proposes an adaptive layer-wise scaling quantization training method,which can support the replacement of full-precision multiplication in all linear layers with 4-bit fixed-point addition and 1-bit XOR operation.The experimental results show that the above method is superior to the existing methods in terms of energy consumption and accuracy,and can reduce the energy consumption of linear layers by 95.8%in the train-ing process.The convolutional neural networks on ImageNet and the Transformer networks on WMT En-De achieve less than 1%accuracy loss.

关键词

神经网络/量化/训练加速/低能耗

Key words

neural network/quantization/training acceleration/low energy consumption

引用本文复制引用

刘畅,张蕊,支天..一种基于自适应PoT量化的无乘法神经网络训练方法[J].高技术通讯,2024,34(6):567-577,11.

基金项目

国家重点研发计划(2018AAA0103300),国家自然科学基金(62102399,U22A2028,U20A20227)和中国科学院稳定支持基础研究领域青年团队计划(YSBR-029)资助项目. (2018AAA0103300)

高技术通讯

OA北大核心CSTPCD

1002-0470

访问量0
|
下载量0
段落导航相关论文