| 注册
首页|期刊导航|计算机工程|面向大规模优化问题的精英贡献两阶段动态分组算法

面向大规模优化问题的精英贡献两阶段动态分组算法

王彬 张娇 李薇 王晓帆 金海燕

计算机工程2024,Vol.50Issue(7):154-163,10.
计算机工程2024,Vol.50Issue(7):154-163,10.DOI:10.19678/j.issn.1000-3428.0067039

面向大规模优化问题的精英贡献两阶段动态分组算法

Elite Contribution Based Two-Stage Dynamic Grouping Algorithm for Large-Scale Optimization Problem

王彬 1张娇 1李薇 2王晓帆 1金海燕1

作者信息

  • 1. 西安理工大学计算机科学与工程学院,陕西 西安 710048
  • 2. 西安理工大学计算机科学与工程学院,陕西 西安 710048||西安理工大学陕西省网络计算与安全技术重点实验室,陕西 西安 710048
  • 折叠

摘要

Abstract

The co-evolution framework is an effective method for solving large-scale global optimization problems.Designing a reasonable decision variable grouping method is key to improving the performance of co-evolution algorithm.Using elite decision variables to dynamically construct elite subcomponents can improve evolutionary efficiency.This paper focuses on the characteristics of inseparable variables in large-scale optimization problems that are difficult to divide.The existing strategy may assign unrelated variables to the same subcomponents of the grouping problem.To address this issue,this paper proposes the Elite Contribution based Two-Stage Dynamic Grouping algorithm(EC-TSDG).First,the variables are randomly grouped in the pre-grouping stage.Subsequently,the contributions of variables are evaluated,and the elite contribution variables are obtained from several variable contributions.Second,in the post-grouping stage,the correlation among the variables is used to determine the remaining variables that interact with the elite decision variables and to merge them to form the elite subcomponent.This enables the variables within the elite subcomponent to correlate in pairs so as to improve the accuracy of variable grouping and convergence speed of the algorithm and to avoid correlation interference between the subcomponents.Finally,an adaptive differential evolution algorithm with an external archive is used as the optimizer for each subcomponent.Compared with other advanced algorithms on the CEC'2013 test set,the proposed algorithm exhibits a faster convergence speed than comparative algorithms.Experimental result show that the Friedman test value of EC-TSDG is 1.43,and its average ranking is 36.78%higher than that of the comparative dynamic grouping algorithm,DCC.

关键词

协同进化/大规模优化问题/两阶段动态分组/贡献信息/精英子组件

Key words

co-evolution/large-scale optimization problem/two-stage dynamic grouping/contribution information/elite subcomponent

分类

计算机与自动化

引用本文复制引用

王彬,张娇,李薇,王晓帆,金海燕..面向大规模优化问题的精英贡献两阶段动态分组算法[J].计算机工程,2024,50(7):154-163,10.

基金项目

国家自然科学基金(U21A20524,62272383). (U21A20524,62272383)

计算机工程

OA北大核心CSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文