| 注册
首页|期刊导航|计算机工程|基于局部分离与多尺度融合的图像超分辨率重建

基于局部分离与多尺度融合的图像超分辨率重建

杨郅树 梁佳楠 曹永军 钟震宇 何永伦

计算机工程2024,Vol.50Issue(7):314-323,10.
计算机工程2024,Vol.50Issue(7):314-323,10.DOI:10.19678/j.issn.1000-3428.0067857

基于局部分离与多尺度融合的图像超分辨率重建

Image Super-Resolution Reconstruction Based on Partial Separation and Multiscale Fusion

杨郅树 1梁佳楠 2曹永军 3钟震宇 4何永伦4

作者信息

  • 1. 五邑大学智能制造学部,广东 江门 529020
  • 2. 广东省科学院智能制造研究所广东省现代控制技术重点实验室,广东 广州 510070||华南理工大学机械与汽车工程学院,广东 广州 511442
  • 3. 五邑大学智能制造学部,广东 江门 529020||广东省科学院智能制造研究所广东省现代控制技术重点实验室,广东 广州 510070||华南理工大学机械与汽车工程学院,广东 广州 511442
  • 4. 广东省科学院智能制造研究所广东省现代控制技术重点实验室,广东 广州 510070
  • 折叠

摘要

Abstract

Currently,deep-learning-based super-resolution reconstruction networks suffer from issues such as convolution operation redundancy,incomplete image reconstruction information,and large model parameters that limit their applicability to edge devices.To address these issues,this study proposes a lightweight image super-resolution reconstruction network based on partial separation and multiscale fusion.This network utilizes partial convolutions for feature extraction and separates partial image channels to reduce redundant computations while maintaining the quality of the image reconstruction.At the same time,a multiscale feature fusion module is designed to learn long-range dependency features and capture spatial features in the spatial dimension using a channel attention enhancement group.This reduces the loss of image reconstruction information and effectively restores the details and textures of the image.Finally,because the multiscale feature fusion block focuses on global feature extraction and fusion,an efficient inverted residual block is constructed to supplement the ability to extract local contextual information.The network is tested on five benchmark datasets:Set 5,Set 14,B 100,Urban 100,and Manga 109,with scale factors of 2,3,and 4 times.The parameters of the network are 373 000,382 0000,and 394 000,and the FLOPs are 84.0×109,38.1×109,and 22.1×109,respectively.Quantitative and qualitative experimental results show that compared with networks such as VDSR,IMDN,RFDN,and RLFN,the proposed network ensures image reconstruction quality with fewer network parameters.

关键词

超分辨率重建/轻量级网络/局部卷积/多尺度融合/长依赖关系

Key words

super-resolution reconstruction/lightweight network/partial convolution/multiscale fusion/long-range dependencies

分类

计算机与自动化

引用本文复制引用

杨郅树,梁佳楠,曹永军,钟震宇,何永伦..基于局部分离与多尺度融合的图像超分辨率重建[J].计算机工程,2024,50(7):314-323,10.

基金项目

佛山市重点领域科技攻关项目(2020001006827) (2020001006827)

广州市科技计划项目(202206010052). (202206010052)

计算机工程

OA北大核心CSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文