| 注册
首页|期刊导航|机械科学与技术|混合高斯噪声条件下稀疏表示方法及其在冲击类故障特征提取中的应用

混合高斯噪声条件下稀疏表示方法及其在冲击类故障特征提取中的应用

魏江 罗杨 第五振坤 兰海 曹宏瑞

机械科学与技术2024,Vol.43Issue(6):917-924,8.
机械科学与技术2024,Vol.43Issue(6):917-924,8.DOI:10.13433/j.cnki.1003-8728.20230031

混合高斯噪声条件下稀疏表示方法及其在冲击类故障特征提取中的应用

Sparse Representation Method Under Mixed Gaussian Noise and Its Application in Impulsive Fault Feature Extraction

魏江 1罗杨 1第五振坤 1兰海 2曹宏瑞3

作者信息

  • 1. 西安交通大学机械工程学院,西安 710049
  • 2. 中国北方车辆研究所,北京 100072
  • 3. 西安交通大学机械工程学院,西安 710049||西安交通大学机械制造系统工程国家重点实验室,西安 710049
  • 折叠

摘要

Abstract

Traditional sparse representation(SR)methods have been widely studied in fault diagnosis field due to their unique advantages in impact feature extraction.However,the traditional SR theory is based on an assumption of Gaussian distribution of interference noise,which makes it difficult to apply to the actual scenario where multiple noise distributions are involved.Regarding the issue above,a new sparse representation method of impact features under mixed Gaussian noise conditionis proposed in this study.Depending on the Bayesian framework of the traditional sparse representation theory and the universal approximation property of the mixed Gaussian distribution,a sparse decomposition model of the mixed Gaussian noiseis established based on the db4 wavelet dictionary,and an optimization algorithm based on Expectation-Maximum(EM)and Alternating Direction Method of Multipliers(ADMM)is derived for model solution.The simulation and experimental results show that the proposed method can effectively extract the weak impact feature under mixed noise interference.

关键词

冲击类故障/故障特征提取/稀疏分解/混合高斯噪声

Key words

impulsive faults/fault feature extraction/sparse decomposition/mixed gaussian noise

分类

矿业与冶金

引用本文复制引用

魏江,罗杨,第五振坤,兰海,曹宏瑞..混合高斯噪声条件下稀疏表示方法及其在冲击类故障特征提取中的应用[J].机械科学与技术,2024,43(6):917-924,8.

基金项目

基础研究项目(20195208003) (20195208003)

机械科学与技术

OA北大核心CSTPCD

1003-8728

访问量0
|
下载量0
段落导航相关论文