| 注册
首页|期刊导航|南京大学学报(自然科学版)|基于多视图对比学习的动态图链接预测方法

基于多视图对比学习的动态图链接预测方法

焦鹏飞 吴子安 刘欢 张纪林 万健

南京大学学报(自然科学版)2024,Vol.60Issue(3):383-395,13.
南京大学学报(自然科学版)2024,Vol.60Issue(3):383-395,13.DOI:10.13232/j.cnki.jnju.2024.03.003

基于多视图对比学习的动态图链接预测方法

Dynamic graph link prediction based on multi-view contrastive learning

焦鹏飞 1吴子安 2刘欢 2张纪林 3万健4

作者信息

  • 1. 杭州电子科技大学网络安全学院,杭州,310018
  • 2. 杭州电子科技大学计算机学院,杭州,310018
  • 3. 数据安全治理浙江省工程研究中心,杭州,310018
  • 4. 浙江科技学院,杭州,310023
  • 折叠

摘要

Abstract

Link prediction aims to infer missing edges in the network or predict possible future edges.Previous research on link prediction has mainly focused on dealing with static networks,to predict missing edges in known networks.However,most complex networks in the real world are dynamically changing,which often makes its link prediction more complex and difficult.In recent years,methods in link prediction based on dynamic graph representation learning have shown promising results.Such methods utilize dynamic graph representation learning methods to learn node representations to capture the structure and evolution information of the network for efficient link prediction.Existing methods mainly adopt recurrent neural network(RNN)or self-attention mechanism(SAM)as the components of neural network architecture,and learn the evolution information of dynamic networks through temporal networks.However,the diversity of dynamic networks and the variability of evolution patterns pose challenges to the methods based on complex temporal networks.It is difficult for these methods to adapt to the evolving evolutionary patterns in different dynamic networks.At the same time,in graph representation learning,contrastive learning has attracted extensive attention because of its powerful self-supervised learning ability.However,most existing methods are focused on static graphs,and few studies on dynamic graphs.To solve the above problems,this paper proposes a link prediction method based on multi-view contrastive learning for dynamic networks,which realizes representation learning and link prediction of dynamic networks without relying on additional temporal network parameters.Specifically,the method treats dynamic network snapshots as multiple views of the network,thereby getting rid of the dependence of contrastive learning on data augmentation.Then,we construct contrastive learning objectives including three views of network structure,node evolution,and topology evolution to mine network structure,the evolution patterns of nodes and high-level structure to learn node representations,ultimately realizing link prediction tasks.Finally,we conduct dynamic link prediction experiments on multiple real datasets,and the experimental results significantly outperform all the baseline methods,verifying the effectiveness of the proposed method.

关键词

链接预测/对比学习/图表示学习/动态网络/动态图嵌入

Key words

link prediction/contrastive learning/graph representation learning/dynamic networks/dynamic graph embedding

分类

信息技术与安全科学

引用本文复制引用

焦鹏飞,吴子安,刘欢,张纪林,万健..基于多视图对比学习的动态图链接预测方法[J].南京大学学报(自然科学版),2024,60(3):383-395,13.

基金项目

国家自然科学基金(62372146),浙江省属高校基本科研业务费专项(GK229909299001-008),之江实验室开放课题(K2022QA0AB01),广东省哲学社会科学规划2020年度青年项目(GD20YGL15) (62372146)

南京大学学报(自然科学版)

OA北大核心CSTPCD

0469-5097

访问量7
|
下载量0
段落导航相关论文