|国家科技期刊平台
首页|期刊导航|南京大学学报(自然科学版)|结合兴趣点类别周期属性和用户短期偏好特征的推荐模型

结合兴趣点类别周期属性和用户短期偏好特征的推荐模型OA北大核心CSTPCD

A recommendation model combining point of interest category periodic attributes and user short-term preference features

中文摘要英文摘要

随着基于位置的社交网络在日常生活中的广泛应用,有效提取用户的隐藏兴趣和行为序列模式并向用户提供满足其个性化需求的下一个兴趣点推荐服务成为推荐领域的热点问题之一.针对下一个兴趣点推荐中的用户偏好挖掘问题,提出基于用户兴趣点类别周期性偏好和短期兴趣相结合的兴趣点推荐模型(Combining Periodic and Spatio-Temporal Intervals'Network,CPSTIN).该模型将用户的签到记录按小时时段模式嵌入时间窗口并使用多头自注意力机制提取用户结合用户兴趣点类别的周期性偏好;同时,将非连续时空间隔信息送入可学习矩阵,使用线性插值法提取用户基于高阶关联性的短期兴趣.最后,在两个真实数据集上验证了该模型的有效性,证明其能有效地利用用户高阶关联性短期兴趣和结合兴趣点类别的周期偏好,更准确地预测用户最有可能访问的下一个兴趣点.

With the widespread application of location-based social networks in daily life,how to effectively extract users'hidden interests and behavior sequence patterns,and provide users with the next Point of Interest(POI)recommendation service to meet their personalized needs has become one of the hot issues in the recommendation field.Aiming at the problem of user preference mining in the next POI recommendation,this paper proposes a POI recommendation model CPSTIN(Combining Periodic and Spatio-Temporal Intervals'Network)based on the combination of periodic preference of user POI category and short-term interest.The model embeds the user record of signing in into the time window by hour period pattern,and uses the multi-head self-attention mechanism to extract the the user's periodic preference combined with the category of POI.At the same time,the model sends the discontinuous spatio-temporal interval information into the learnable matrix,and uses the linear interpolation method to extract the user's short-term interest based on high-order correlation.Finally,the validity of the model is verified on two real datasets.The model effectively uses the user's high-order relevance short-term interest and the periodic preference based on the POI category to more accurately predict the next POI that the user is most likely to visit.

桑春艳;易星宇;廖世根;文俊浩

重庆邮电大学软件学院,重庆,400065重庆大学大数据与软件学院,重庆,401331

计算机与自动化

兴趣点推荐自注意力机制线性插值嵌入类别周期兴趣

POI recommendationself-attentionlinear interpolation embeddingcategory periodic interest

《南京大学学报(自然科学版)》 2024 (003)

429-441 / 13

国家自然科学基金(62002037,620720060),重庆市自然科学基金(cstc2019jcyj-msxmX0588)

10.13232/j.cnki.jnju.2024.03.007

评论