|国家科技期刊平台
首页|期刊导航|森林工程|基于多源数据的像元尺度东北三省夜间PM2.5估算

基于多源数据的像元尺度东北三省夜间PM2.5估算OA北大核心CSTPCD

Estimation of Nighttime PM2.5 in the Three Northeast Provinces at Pixel Scale Based on Multi-source Data

中文摘要英文摘要

气候变化与森林植被影响着PM2.5质量浓度的分布,而PM2.5作为空气的重要污染物也可直接或间接影响森林植被生长.目前,基于光学气溶胶厚度(AOD)反演日间PM2.5的技术已经较为成熟,夜间PM2.5作为日间PM2.5的补充,对于PM2.5的全天监测具有重要意义.基于辐射传输理论,以夜间灯光亮度、增强型植被指数和7个气象因素(2 m露点温度、2 m温度、U风速分量、V风速分量、大气表面压力、蒸发量、降雨量)作为输入变量,夜间PM2.5质量浓度作为响应变量,建立机器学习估算模型,以期为东北三省夜间PM2.5质量浓度监测提供参考.结果表明,基于集成树构建的模型具有较高的估算精度,其拟合优度(R2)为0.68,平均绝对误差(MAE)为7.05 μg/m3,均方根误差(RMSE)为11.62 μg/m3.此外,通过分析东北三省各监测站PM2.5估算值与真实值的误差,发现模型具有一定的时空敏感性.通过及时准确地掌控夜间PM2.5质量浓度的分布状况,可以为森林植被保护工作的开展提供参考.

Climate change and forest vegetation affect the distribution of PM2.5 concentrations,and PM2.5 as an important air pol-lutant can also affect forest vegetation growth directly or indirectly.Currently,the technique of inverting daytime PM2.5 based on opti-cal aerosol thickness(AOD)data is relatively mature,and as a complement to daytime PM2.5,nighttime PM2.5 is of great significance for the all-day PM2.5 monitoring.Based on the radiation transmission theory,the machine learning estimation model of nighttime PM2.5 concentration in the three northeastern provinces was established with nighttime light brightness,enhanced vegetation index and seven meteorological factors(2 m dewpoint temperature,2 m temperature,u component of wind speed,v component of wind speed,atmo-spheric surface pressure,evaporation,precipitation)as input variables,and nighttime PM2.5 concentration as response variable,aim-ing to provide a reference for monitoring nighttime PM2.5 concentration in the three northeastern provinces.The results show that the model constructed based on the integration tree has high estimation accuracy,with a goodness of fit(R2)of 0.68,a mean absolute error(MAE)of 7.05 μg/m3,and a root mean square error(RMSE)of 11.62 μg/m3.In addition,the model is found to have certain spatial and temporal sensitivity by analyzing the errors between the estimated and true PM2.5 values at each monitoring station in the three northeastern provinces.It can provide a reference for the forest vegetation conservation work by timely and accurately controlling the distribution of nighttime PM2.5 concentration.

李海洋;叶俊

黑龙江科技大学 矿业工程学院,哈尔滨,150022

环境科学

夜间PM2.5质量浓度机器学习辐射传输东北三省森林植被保护

Nighttime PM2.5 concentrationmachine learningradiation transmissionthe three northeastern provincesforest vegetation conservation

《森林工程》 2024 (004)

11-18 / 8

黑龙江科技大学引进高层次人才科研启动基金项目(7021000009020403).

10.7525/j.issn.1006-8023.2024.04.002

评论