深度学习语义分割方法用于双致密天体并合引力波数据处理研究OA北大核心CSTPCD
Research on Gravitational Wave Data Processing for Binary Compact Object Mergers Using Deep Learning Semantic Segmentation Methods
研究表明,基于深度学习的引力波搜寻,有望解决匹配滤波方法的低效率问题.与传统的匹配滤波引力波信号搜寻、基于贝叶斯后验或深度学习的波源参数估计方法相比,基于深度学习的端对端的引力波搜寻输出缺乏波源的时频信息,如双星并合信号到达时间和信号在探测站灵敏度区间的持续时间等.首次实现了深度学习用于应变信号时频点的细粒度分类,研究了基于图像语义分割的引力波搜寻方法.通过真实噪声和仿真物理信号合成数据,使用Q变换将其转换为时频图,构建像素级标注数据集.构建并训练时频图像语义分割模型,研究了其应用于引力波信号数据分析的可行性.结果表明语义分割方法未来有望作为基于深度学习的引力波信号搜寻流水线的一个组件,还可用于进一步提取信号的时频信息.
Recent studies have shown that deep learning(DL)based gravitational wave(GW)search holds the promise of addressing the inefficiencies of matched filtering method.Compared to matched filtering for GW search and Bayesian posterior-based or deep learning-based methods for GW source parameter estimation,the DL based end-to-end GW search lacks the time-frequency information of the source,such as the arrival time and the duration of the signals within the sensitivity range of the detectors.This study represents the first implementation of fine-grained classification of time-frequency points in strain signals and explores a gravitational wave search approach based on image semantic segmentation.The data is synthesized by combining real noise detected by the Hanford interferometer and simulated physical signals.It is then transformed into time-frequency images using the Q-transform,and a pixel-level annotated dataset is constructed.The time-frequency image semantic segmentation model is built and trained,and the results demonstrate the feasibility of image semantic segmentation methods in the analysis of gravitational wave signal data.The image semantic segmentation methods have the potential to become a component of the gravitational wave signal search pipeline for further extraction of time-frequency information of signals in the future.
马存良;钟国健;闵源;嘉明珍;贺观圣
江西理工大学,赣州 341000南华大学,衡阳 421001||中国科学院紫金山天文台,南京 210023
天文学
引力波数据分析深度学习语义分割
gravitational wave data analysisdeep learningsemantic segmentation
《天文学进展》 2024 (002)
299-314 / 16
国家自然科学基金(12205139);江西省自然科学基金(20224BAB1012);湖南省自然科学基金(2022JJ40347)
评论