多尺度注意力特征融合的单图像超分辨率研究OACSTPCD
Research on Single Image Super-resolution Based on Multi-scale Attention Feature Fusion
高分辨率意味着图像具有高像素密度,可以提供更多的细节,这些细节往往在应用中起到关键作用.基于生成对抗网络的图像超分辨率由于具有生成丰富细节的潜力,近年来受到越来越多的关注.针对现有的网络模型忽略从特征中学习本质纹理特征和感受野有限的问题,基于Real-ESRGAN和多尺度注意力特征融合,对网络进行优化,将残差稠密块替换成大核分解和多尺度学习相结合模块与全局学习与下采样模块的双分支结构方法,提出一种多尺度注意力融合的单图像超分辨率重建算法,增强每个局部与全局令牌对之间的交互,从而形成更丰富和信息量更大的表示.对数据集进行2,3,4 倍超分辨率重建实验,通过峰值信噪比(PSNR)、结构相似性(SSIM)对重建结果进行评价,与SRCNN、SRGAN、ACMF、MSRDN、WYD、LBW、YJX、Real-ESRGAN等方法进行对比.结果表明,该算法优于其他模型,且具有更好的直观视觉效果.
High resolution means that the image has a high pixel density,which can provide more details,which often play a key role in the application.Image super-resolution based on generative adversarial networks has attracted more and more attention in recent years due to its potential to generate rich details.Aiming at the problem that the existing network model ignores the learning of essential texture features from features and the limited receptive field,based on Real-ESRGAN and multi-scale attention feature fusion,the network is op-timized,and the residual-in-residual dense block is replaced by a large kernel decomposition and multi-scale learning.The method of combining the module with the dual branch structure of the global learning and down-sampling module proposes a single image super-resolution reconstruction algorithm based on multi-scale attention fusion,which enhances the interaction between each local and global token pair to form a richer and more informative representation.Super-resolution reconstruction experiments of 2,3,4 times were carried out on the data set.The reconstruction results were evaluated by peak signal-to-noise ratio(PSNR)and structural similarity(SSIM),and compared with SRCNN,SRGAN,EDSR,RDN,RCAN,HAN,ENLCA,MAN and Real-ESRGAN methods.The results show that the proposed algorithm is better than other models,and has better visual effect.
沈学利;翟宇琦;关刘美;苏婷
辽宁工程技术大学 软件学院,辽宁 葫芦岛 125105
计算机与自动化
生成对抗网络图像超分辨率多尺度注意力特征融合大核分解全局学习与下采样令牌
generative adversarial networkimage super-resolutionmulti-scale attention feature fusionlarge kernel decompositionglobal learning and down-samplingtoken
《计算机技术与发展》 2024 (007)
31-39 / 9
国家自然科学基金资助项目(62173171)
评论