| 注册
首页|期刊导航|计算机技术与发展|基于字符注意力与词典特征的教育领域实体识别

基于字符注意力与词典特征的教育领域实体识别

王萌 刘春刚 赵华

计算机技术与发展2024,Vol.34Issue(7):168-174,7.
计算机技术与发展2024,Vol.34Issue(7):168-174,7.DOI:10.20165/j.cnki.ISSN1673-629X.2024.0109

基于字符注意力与词典特征的教育领域实体识别

Entity Recognition in Education Domain Based on Character Attention and Dictionary Feature

王萌 1刘春刚 1赵华1

作者信息

  • 1. 河北师范大学 职业技术、中燃工学院,河北 石家庄 050024||河北省信息融合与智能控制重点实验室,河北 石家庄 050024
  • 折叠

摘要

Abstract

Aiming at the problem that the existing entity recognition methods do not consider the influence of education terms on the model recognition performance,which leads to poor model performance and fuzzy knowledge entity boundary,a new entity recognition method based on character attention and dictionary feature is proposed.In this method,word vectors are generated according to contextual semantic information through BERT preprocessing language model,and a character attention mechanism based on part of speech is proposed to redistribute the weight of words in sentences.Then,it is spliced and fused with the features of the educational field dictionary constructed,and input into BiLSTM network and IDCNN network to extract features.The output of the two layers is dynamically combined through the attention mechanism,and the output of the two layers is weighted to fuse new features.Finally,the label sequence corresponding to the entity is obtained through conditional random field calculation.Compared to existing methods,the proposed method achieves higher accuracy in an educational domain text corpus.The precision,recall,and F1 score of the recognition results are 90.71%,91.37%,and 91.04%,respectively.

关键词

实体识别/词典特征/字符注意力/IDCNN/条件随机场

Key words

entity recognition/dictionary feature/character attention/IDCNN/conditional random field

分类

计算机与自动化

引用本文复制引用

王萌,刘春刚,赵华..基于字符注意力与词典特征的教育领域实体识别[J].计算机技术与发展,2024,34(7):168-174,7.

基金项目

国家自然科学基金(62071167) (62071167)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文