| 注册
首页|期刊导航|计算机技术与发展|基于数字孪生的城市交通流量可视预测研究

基于数字孪生的城市交通流量可视预测研究

王健松 李学俊 王桂娟 郭皓 吴亚东

计算机技术与发展2024,Vol.34Issue(7):192-198,7.
计算机技术与发展2024,Vol.34Issue(7):192-198,7.DOI:10.20165/j.cnki.ISSN1673-629X.2024.0112

基于数字孪生的城市交通流量可视预测研究

City Traffic Flow Visual Prediction Based on Digital Twin

王健松 1李学俊 1王桂娟 1郭皓 1吴亚东2

作者信息

  • 1. 西南科技大学 计算机科学与技术学院,四川 绵阳 621010
  • 2. 四川轻化工大学 计算机科学与工程学院,四川 自贡 645002
  • 折叠

摘要

Abstract

Due to the complexity and dynamic nature of urban road network data,it is difficult to interpret the road correlation directly,and the uncertainty of direct connectivity also affects the prediction accuracy.To solve these problems,with taxi trajectory data and graph convolutional neural network,we propose an intelligent visual prediction framework for urban traffic flow based on digital twins.In order to improve the prediction accuracy,we create the spatio-temporal correlation graph of the road network based on the historical traffic data,and construct the ASTRG-GCN traffic flow prediction model of the spatio-temporal convolutional network.Through digital twin technology,we integrate dynamic traffic data and virtual three-dimensional traffic scenes to simulate traffic scenes in real time and provide decision support for urban traffic optimization.Finally,we design and implement the visual analysis framework of urban traffic flow,which enables users to analyze traffic operation situation efficiently.Experimental results show that the prediction accuracy of the proposed model is higher than that of the comparison algorithm on the two data sets.The visual analysis system of digital twin can realize the effect of traffic congestion identification,traffic scene simulation and traffic change comparison,and provide decision support for traffic planners.

关键词

数字孪生/城市交通/轨迹数据/流量预测/可视化分析

Key words

digital twin/city traffic/trajectory data/flow prediction/visualization analysis

分类

信息技术与安全科学

引用本文复制引用

王健松,李学俊,王桂娟,郭皓,吴亚东..基于数字孪生的城市交通流量可视预测研究[J].计算机技术与发展,2024,34(7):192-198,7.

基金项目

四川省科技项目(2023YFG0307) (2023YFG0307)

四川轻化工大学人才引进项目(2020RC20) (2020RC20)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文