| 注册
首页|期刊导航|计算机技术与发展|基于改进YOLO算法的无人机图像草原火灾检测研究

基于改进YOLO算法的无人机图像草原火灾检测研究

刘志强 张朝阳 王昱 张旭

计算机技术与发展2024,Vol.34Issue(7):207-213,7.
计算机技术与发展2024,Vol.34Issue(7):207-213,7.DOI:10.20165/j.cnki.ISSN1673-629X.2024.0102

基于改进YOLO算法的无人机图像草原火灾检测研究

Research on Grassland Fire Detection Based on Improved YOLO Algorithm for Unmanned Aerial Vehicle Images

刘志强 1张朝阳 1王昱 1张旭2

作者信息

  • 1. 内蒙古工业大学 信息工程学院,内蒙古 呼和浩特 010080
  • 2. 内蒙古建筑职业技术学院,内蒙古 呼和浩特 010020
  • 折叠

摘要

Abstract

Once a grassland fire occurs,it spreads rapidly and irregularly around due to the influence of wind,terrain and other factors,forming a burning strip with an expanding area.In order to improve the efficiency of grassland fire detection,combining with the image characteristics of grassland fire captured by unmanned aerial vehicle(UAV),we study the grassland fire detection method based on the improved YOLO algorithm.Firstly,for the characteristics of long and narrow fire area and small percentage of fire area,the Neck part of YOLO algorithm is optimized,and a feature extraction network FC-FP Neck with full link structure is proposed,so that the semantic features and localization features are fully integrated and the feature extraction ability of the network is improved.Secondly,an improved adaptive weighted loss function is proposed by combining the threshold segmentation technology to improve the model's convergence speed,and at the same time,solve the problem of insufficient sensitivity of fire detection,which is easy to cause false detection.The feasibility of the improved algorithm is tested on the public small target detection dataset AI-TOD,and the average accuracy is improved by 7.28%and the average precision is improved by 12.46%;the average precision on the self-constructed grassland fire dataset reaches 90.24%and the average accuracy reaches 87.33%.The experiment shows that the improved algorithm improves the efficiency of grassland fire detection.

关键词

草原火灾/YOLO算法/特征金字塔网络/阈值分割/自适应加权损失函数

Key words

grassland fire/YOLO algorithm/feature pyramid network/threshold segmentation/adaptive weight loss function

分类

信息技术与安全科学

引用本文复制引用

刘志强,张朝阳,王昱,张旭..基于改进YOLO算法的无人机图像草原火灾检测研究[J].计算机技术与发展,2024,34(7):207-213,7.

基金项目

国家自然科学基金(61962044) (61962044)

内蒙古自治区科技计划项目(2021GG0250) (2021GG0250)

内蒙古自治区自然科学基金(2021MS06029) (2021MS06029)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文