| 注册
首页|期刊导航|西安电子科技大学学报(自然科学版)|双向长短期记忆网络的时间序列预测方法

双向长短期记忆网络的时间序列预测方法

管业鹏 苏光耀 盛怡

西安电子科技大学学报(自然科学版)2024,Vol.51Issue(3):103-112,10.
西安电子科技大学学报(自然科学版)2024,Vol.51Issue(3):103-112,10.DOI:10.19665/j.issn1001-2400.20231205

双向长短期记忆网络的时间序列预测方法

Time series prediction method based on the bidirectional long short-term memory network

管业鹏 1苏光耀 1盛怡2

作者信息

  • 1. 上海大学 通信与信息工程学院,上海 200444
  • 2. 上海体育学院 竞技运动学院,上海 200438
  • 折叠

摘要

Abstract

Time series prediction means the use of historical time series to predict a period of time in the future,so as to formulate corresponding strategies in advance.At present,the categories of time series are complex and diverse.However,existing time series prediction models cannot achieve stable prediction results when faced with multiple types of time series data.The application requirements of complex time series data prediction in reality are difficult to simultaneously meet.To address the problem,a time series prediction method is proposed based on the Bidirectional Long and Short-term Memory(BLSTM)with the attention mechanism.The improved forward and backward propagation mechanisms are used to extract temporal information.The future temporal information is inferred through an adaptive weight allocation strategy.Specifically,an improved BLSTM is proposed to extract deep time series features and explore temporal dependencies of context by combining BLSTM and Long Short-term Memory(LSTM)networks,on the basis of which the proposed temporal attention mechanism is fused to achieve adaptive weighting of deep time series features,which improves the saliency expression ability of deep time series features.Experimental results demonstrate that the proposed method has a superior prediction performance in comparison with some representative methods in multiple time series datasets of different categories.

关键词

时间序列/双向长短期记忆网络/长短期记忆网络/注意力机制/深度学习

Key words

time series/Bidirectional Long Short-Term Memory/Long Short-Term Memory/attention mechanism/deep learning

分类

计算机与自动化

引用本文复制引用

管业鹏,苏光耀,盛怡..双向长短期记忆网络的时间序列预测方法[J].西安电子科技大学学报(自然科学版),2024,51(3):103-112,10.

基金项目

国家重点研发计划(2019YFC1520500) (2019YFC1520500)

西安电子科技大学学报(自然科学版)

OA北大核心CSTPCD

1001-2400

访问量0
|
下载量0
段落导航相关论文