|国家科技期刊平台
首页|期刊导航|现代电子技术|抵抗推理攻击的车联网位置隐私增强方法

抵抗推理攻击的车联网位置隐私增强方法OA北大核心CSTPCD

Method of location privacy enhancement against inference attacks in IoV

中文摘要英文摘要

车联网中实体可信度不明确,用户与其他实体频繁通信,会增加用户隐私泄露风险.为此,提出一种抵抗推理攻击的车联网位置隐私增强方法.用户向路边单元(RSU)请求兴趣点(POIs),并从本地缓存中根据用户相似度推荐多个合适的POIs,在多POIs中选择最终目的地.即使兴趣点被攻击者窃取也难以推断用户的最终目的地.如果用户未收到期望的POI,可以向服务提供商(SP)请求扩大服务范围.仿真结果表明,与对比方法相比,所提方法的通信开销平均降低14%,位置熵平均提高12%.所提方案通过减小与SP的通信次数,不仅能减小通信开销,还能增强隐私保护程度.通过用户偏好计算更符合用户期望的多个POIs,供用户选择最终的目的地,不仅能提高服务可用性,还能抵抗推理攻击.

Unclear entity credibility in the internet of vehicles(IoV),and frequent communication between users and other entities,can increase the risk of user privacy leakage.Therefore,a location privacy enhancement method against inference attacks in IoV is proposed.User can request the road side units(RSUs)for points of interest(POIs).The multiple suitable POIs are recommended based on user similarity from the local cache,so that the final destination among the multiple POIs is selected.Even if recommended POIs are stolen by an attacker,it is difficult to infer the user's final destination.If users do not find the desired POI,they can request the service provider(SP)to expand the service scope.The simulation results show that in comparison with the comparison method,the communication cost can decrease by 14%on average and the position entropy can increase by 12%on average.The proposed scheme can reduce communication costs and enhance privacy protection by reducing the number of communications with SP.Users can select the final destination by multiple POIs that are more consistent with users' expectations by means of user preference calculation,which can improve service availability and resist inference attacks.

张金瑞;王庆国;黄元浩;邢玲

河南省运输事业发展中心,河南 郑州 450000宇通客车股份有限公司,河南 郑州 450016河南科技大学 信息工程学院,河南 洛阳 471000

电子信息工程

车联网隐私增强推理攻击路边单元兴趣点位置隐私保护基于位置的服务(LBS)主动缓存

internet of vehiclesprivacy enhancementinference attacksroad side unitpoint of interestlocation privacy protectionlocation based services(LBS)active caching

《现代电子技术》 2024 (014)

182-186 / 5

郑州市重大科技创新专项(2021KJZX0060)

10.16652/j.issn.1004-373x.2024.14.028

评论