| 注册
首页|期刊导航|信息与控制|基于改进鸡群优化算法运动学与改进鸡群优化-Elman神经网络非运动学的机器人误差标定

基于改进鸡群优化算法运动学与改进鸡群优化-Elman神经网络非运动学的机器人误差标定

江小辉 孙翼飞 郭维诚 侯春杰 任斐

信息与控制2024,Vol.53Issue(3):315-328,14.
信息与控制2024,Vol.53Issue(3):315-328,14.DOI:10.13976/j.cnki.xk.2024.3051

基于改进鸡群优化算法运动学与改进鸡群优化-Elman神经网络非运动学的机器人误差标定

Robot Error Calibration Based on Improved CSO Algorithm Kinematics and Improved CSO-Elman Neural Network Non-kinematics

江小辉 1孙翼飞 1郭维诚 1侯春杰 2任斐2

作者信息

  • 1. 上海理工大学机械工程学院,上海 200093
  • 2. 上海航天设备制造总厂有限公司,上海 200240
  • 折叠

摘要

Abstract

Aiming at the positioning error calibration problem of industrial robots,we combine the kine-matics and non-kinematics aspects to calibrate the positioning error of robots.Aiming at the kine-matics of a robot,a kinematics error model is developed and an improved chicken swarm optimica-tion(CSO)algorithm is proposed to identify the geometric parameter error of the robot.The effect of the proposed algorithm is verified by comparing the Levenberg-Marquardt iterative algorithm and the particle swarm optimization algorithm.The IRB1200 robot is taken as the experimental object,and error data are collected using an APIT3 laser tracker.A robot error calibration experiment platform is built to conduct experiments.The experimental measurement shows that the average po-sitioning error of the robot end is decreased from 2.76 mm to 1.45 mm,which is increased by 47.5%.Furthermore,for the non-kinematic aspect of the robot,the improved CSO algorithm pro-posed in the kinematic error calibration is used to optimize the initial threshold and weight of the Elman neural network,and the Elman neural network optimized with initial parameters is used to establish the mapping relationship between the robot end position error and the robot joint angle to predict the robot position error in a trained robot cube space.The prediction effect of the ordinary Elman neural network was compared.The experimental measurement shows that the average posi-tioning of the robot end is improved by 34.9%compared with that before calibration,which verifies the fitting prediction effect of the neural network proposed in this study.

关键词

工业机器人/参数辨识/Elman神经网络/鸡群优化算法

Key words

industrial robot/parameter identification/Elman neural network/chicken swarm optimization

分类

信息技术与安全科学

引用本文复制引用

江小辉,孙翼飞,郭维诚,侯春杰,任斐..基于改进鸡群优化算法运动学与改进鸡群优化-Elman神经网络非运动学的机器人误差标定[J].信息与控制,2024,53(3):315-328,14.

基金项目

上海市科学技术委员会项目(2051105704) (2051105704)

信息与控制

OA北大核心CSTPCD

1002-0411

访问量0
|
下载量0
段落导航相关论文