动态场景下基于语义和几何约束的视觉SLAM算法OA北大核心CSTPCD
Visual SLAM Algorithm Based on Semantic and Geometric Constraints under Dynamic Scenes
同时定位与地图构建(SLAM)是智能移动机器人在未知环境中进行状态估计的基本能力之一.然而,大多数视觉SLAM系统依赖于静态场景假设,因此在动态场景中具有严重的低精度和差鲁棒性的问题,此外,当前已有的动态SLAM系统存在实时性差的问题,为了解决这些问题,本文提出了一种面向动态场景下基于语义和几何约束相结合的SLAM 系统(Dynamic Semantic Geometric SLAM,DSG-SLAM),旨在高精度地实现实时运行.DSG-SLAM是在ORB-SLAM2框架下融合GhostNet-YOLOv7目标检测网络和对极几何约束的视觉SLAM系统.具体是在ORB-SLAM2(Oriented FAST and Rotated BRIEF SLAM2)基础上添加了 一个并行的语义线程以获取2D语义信息,并在跟踪线程中结合语义和几何约束添加了一个快速的动态特征剔除算法.最后,在TUM(Technische Universität München)公共数据集和真实环境下进行评估,结果显示,对于高动态场景,DSG-SLAM的定位精度相对于O RB-SLAM2提升了 94.55%,对于低动态场景,提升了 22.99%,同时系统运行频率达到了 30 Hz,在保证实时运行的前提下,有效地提高了在动态场景中的定位精度.
Simultaneous localization and mapping(SLAM)is one of the fundamental capabilities of in-telligent mobile robots for state estimation in unknown environments.However,most visual SLAM systems rely on the assumption of a static scene,which results in severe problems of low accuracy and poor robustness in dynamic scenes.Furthermore,existing dynamic SLAM systems suffer from poor real-time performance.To address these issues,a SLAM system is proposed based on the combination of semantic and geometric constraints(DSG-SLAM),aiming at achieving real-time robust operations in dynamic scenes.DSG-SLAM integrates the GhostNet-YOLOv7 object detection network and an epipolar geometric constraint visual SLAM system in the ORB-SLAM2(Oriented FAST and Rotated BRIEF SLAM2)framework.Specifically,a parallel semantic thread is added on the basis of ORB-SLAM2 to obtain two-dimensional semantic information,and a fast dynamic feature rejection algorithm is added to the tracking thread by combining semantic and geometric constraints.Finally,the system is evaluated on the TUM public dataset and in real environments.The results show that,for high dynamic scenes,DSG-SLAM improves positioning accuracy by 94.55%compared with ORB-SLAM2,and for low dynamic scenes,the improvement is 22.99%.Furthermore,the system operates at a frequency of 30 Hz,effectively improving the positioning ac-curacy in dynamic scenes while ensuring real-time operations.
刘胤真;徐向荣;张卉;俞青松
安徽工业大学机械工程学院,安徽马鞍山 243032
计算机与自动化
动态场景同时定位与地图构建目标检测位姿估计对极几何
dynamic scenesimultaneous localization and mapping(SLAM)target detectionpose estimationepipolar geometry
《信息与控制》 2024 (003)
388-399 / 12
国家重点研发计划项目(2017YFE0113200);安徽工业大学青年基金(QZ202217)
评论