|国家科技期刊平台
首页|期刊导航|安徽大学学报(自然科学版)|2维带色散4阶扩散方程的高精度紧致格式

2维带色散4阶扩散方程的高精度紧致格式OA北大核心CSTPCD

High order compact scheme for the two-dimensional fourth-order diffusion equations with dispersion

中文摘要英文摘要

针对1,2维带色散4阶扩散方程提出了一种高精度紧致格式.首先采用局部1维化方法将2维问题转化为x,y方向的两个1维带色散4阶扩散方程,其次分别对3,4阶空间导数进行6阶紧致格式离散,把带色散4阶扩散方程转化为一个常微分方程组,再利用求解常微分方程组的L-稳定的Simpson方法构造时间3阶、空间6阶精度的数值格式,并证明该格式是绝对稳定的.通过数值实验和比较,验证论文格式的有效性.

In this paper,a high-order compact scheme for one-dimensional and two-dimensional fourth-order diffusion equation with dispersion was proposed.Firstly,the two-dimensional problem was transformed into two one-dimensional fourth-order diffusion equations with dispersion in the x and y directions by using the local one-dimensional method.Secondly,the third-order and fourth-order spatial derivatives were discretized by the sixth-order compact scheme respectively,and the fourth-order diffusion equation with dispersion was transformed into a system of ordinary differential equations,then the L-stable Simpson method for solving ordinary differential equations was used to construct the numerical scheme with third-order accuracy in time and sixth-order accuracy in space,and it was proved that the scheme was absolutely stable.Numerical experiments and comparisons verified the effectiveness of the proposed scheme.

王红玉;李冉冉;开依沙尔·热合曼

新疆大学数学与系统科学学院,新疆乌鲁木齐 830017

数学

2维带色散4阶扩散方程高精度紧致差分格式Crank-Nicolson格式局部1维化方法L-稳定Simpson格式

two-dimensional fourth-order diffusion equation with dispersionhigh-order compact difference schemeCrank-Nicolson schemelocal one-dimensional methodL-stable Simpson scheme

《安徽大学学报(自然科学版)》 2024 (004)

27-35 / 9

国家自然科学基金资助项目(11461069);新疆大学博士启动基金资助项目(BS150204)

10.3969/j.issn.1000-2162.2024.04.005

评论