|国家科技期刊平台
首页|期刊导航|安徽大学学报(自然科学版)|多源信号特征融合的电能质量扰动识别

多源信号特征融合的电能质量扰动识别OA北大核心CSTPCD

Power quality disturbance identification based on multi-source signal feature fusion

中文摘要英文摘要

为了解决风能、太阳能等可再生能源输出的不稳定性和间歇性给电能质量带来的问题,提出多源信号特征融合的电能质量扰动识别方法.该方法引入电流信息增强扰动特征,为解决电能质量扰动识别提供了新的视角.算例分析结果表明:相对于其他2种方法,该文方法的4个评价指标(准确率、精确率、召回率和F1分数)均最高.因此,该文方法具有优越性.

To address the issues of instability and intermittency in the output of renewable energy sources such as wind and solar power affecting power quality,a method for power quality disturbance identification based on multi-source signal feature fusion was proposed.This method introduced current information to enhance disturbance features,providing a new perspective for solving power quality disturbance identification.Case analysis results indicated that compared with two other methods,the proposed method achieved the highest scores in four evaluation metrics(accuracy,precision,recall and Fl score).Therefore,the proposed method demonstrated superiority.

陈思源;程志友;杨猛;胡乐乐

安徽大学电子信息工程学院,安徽合肥 230601安徽大学互联网学院,安徽合肥 230039||安徽大学教育部电能质量工程研究中心 安徽合肥 230601

动力与电气工程

电能质量扰动残差网络多源信号特征融合相对位置矩阵有效通道注意力

power quality disturbanceresidual networkmulti-source signal feature fusionrelative position matrixECA

《安徽大学学报(自然科学版)》 2024 (004)

62-66 / 5

国家自然科学基金资助项目(6227020935);安徽省科技重大专项(18030901018)

10.3969/j.issn.1000-2162.2024.04.010

评论