| 注册
首页|期刊导航|安全、健康和环境|基于频域子空间字典学习的干气密封声发射信号降噪方法

基于频域子空间字典学习的干气密封声发射信号降噪方法

黄鑫 马骏 陈文武 屈定荣 刘景明

安全、健康和环境2024,Vol.24Issue(7):21-28,8.
安全、健康和环境2024,Vol.24Issue(7):21-28,8.DOI:10.3969/j.issn.1672-7932.2024.07.004

基于频域子空间字典学习的干气密封声发射信号降噪方法

A Noise Reduction Method for Acoustic Emission Signals of Dry Gas Seals Based on Frequency Subspace Dictionary Learning

黄鑫 1马骏 2陈文武 1屈定荣 1刘景明3

作者信息

  • 1. 化学品安全全国重点实验室,山东青岛 266104||中石化安全工程研究院有限公司,山东青岛 266104
  • 2. 中国石油化工股份有限公司科技部,北京 100728
  • 3. 中石化(天津)石油化工有限公司,天津 300271
  • 折叠

摘要

Abstract

Aiming at the problems of low signal-to-noise ratio and susceptibility to background noise in-terference in dry gas seal acoustic emission signals,a denoising method based on frequency domain sub-space dictionary learning was proposed.Firstly,ob-tain the mutual relationship between each frequency band based on adjacent relevant information of the time-frequency distribution of the acoustic emission signal.Based on this,the boundary of the frequency domain division was determined,and the correspond-ing empirical wavelet family was constructed.The sparse reconstruction of the acoustic emission signal was carried out in each subspace using the time shift invariant dictionary learning algorithm.On this ba-sis,the kurtosis index of the reconstructed signal was used to weight each component.The experimental re-sults showed that the proposed algorithm improves the signal kurtosis index from 48.43 to 185.93,achie-ving noise reduction of acoustic emission signals and enhancement of collision and wear characteristics dur-ing dry gas sealing start-up process.

关键词

干气密封/声发射/经验小波变换/稀疏字典学习/信号降噪

Key words

dry gas seal/acoustic emission/empiri-cal wavelet transform/sparse dictionary learning/sig-nal noise reduction

分类

机械制造

引用本文复制引用

黄鑫,马骏,陈文武,屈定荣,刘景明..基于频域子空间字典学习的干气密封声发射信号降噪方法[J].安全、健康和环境,2024,24(7):21-28,8.

基金项目

中国石油化工股份公司科技部项目(323031),干气密封故障特征研究及监测技术. (323031)

安全、健康和环境

1672-7932

访问量0
|
下载量0
段落导航相关论文