| 注册

特殊图的完美双罗马控制数

张宁 叶淼林 谢欣宇

安庆师范大学学报(自然科学版)2024,Vol.30Issue(2):26-33,8.
安庆师范大学学报(自然科学版)2024,Vol.30Issue(2):26-33,8.DOI:10.13757/j.cnki.cn34-1328/n.2024.02.005

特殊图的完美双罗马控制数

Perfect Double Roman Domination Number of Special Graphs

张宁 1叶淼林 1谢欣宇1

作者信息

  • 1. 安庆师范大学 数理学院,安徽 安庆 246133
  • 折叠

摘要

Abstract

Building upon the theory of double Roman domination, the concept of perfect double Roman domination was initially introduced by Ayotunde in 2020, forging a connection between double Roman domination number and perfect double Roman domination number. In this paper, by using the size relationship between the double Roman domination number and the perfect double Roman domination number, the perfect double Roman domination numbers of the strong product graph P2⊠Pn, P3⊠Pn, the grid graph P2□Pn, the thorn graph of complete graph is first determined. Then, under the condition of giv-en leaf points and support points, using inductive hypothesis, the upper bound of perfect double Roman domination is im-proved, and the related conclusions of perfect double Roman domination are extended and perfected.

关键词

强积图/格子图/完全图的刺图/完美双罗马控制/完美双罗马控制数

Key words

strong product graphs/grid graph/thorn graphs of complete graphs/perfect double roman domination/perfect double roman domination number

分类

数理科学

引用本文复制引用

张宁,叶淼林,谢欣宇..特殊图的完美双罗马控制数[J].安庆师范大学学报(自然科学版),2024,30(2):26-33,8.

基金项目

国家自然科学基金(11871077),安徽省自然科学基金(1808085MA04),安徽高校自然科学研究重点项目(KJ2021A0650),省级研究生线下示范课程(2022xxsfkc038)和校级研究生线下课程(2021aqnuxxkc03) (11871077)

安庆师范大学学报(自然科学版)

1007-4260

访问量0
|
下载量0
段落导航相关论文