| 注册
首页|期刊导航|北京师范大学学报(自然科学版)|基于卷积神经网络的高效量子态层析方法

基于卷积神经网络的高效量子态层析方法

孙乾 蒋楠

北京师范大学学报(自然科学版)2024,Vol.60Issue(3):325-330,6.
北京师范大学学报(自然科学版)2024,Vol.60Issue(3):325-330,6.DOI:10.12202/j.0476-0301.2023258

基于卷积神经网络的高效量子态层析方法

Efficient quantum state tomography method based on convolutional neural networks

孙乾 1蒋楠1

作者信息

  • 1. 北京师范大学物理学系,北京
  • 折叠

摘要

Abstract

Various reconstruction algorithms of quantum state tomography are sorted out systematically.Combining with MATLAB numerical simulation,the reconstruction effects of linear reconstruction,linear regression estimation,maximum likelihood estimation and deep neural network-based quantum state tomography are compared and analyzed.For 1 to 3 qubits,convolutional neural network(CNN)based reconstruction algorithms achieves a fidelity of>99.5%with a shorter period of time,which has significant advantages in algorithm complexity and fidelity compared to other classical reconstruction algorithms.Due to the strong fitting ability to complex models,CNN helps to solve the problem of negative eigenvalues in estimated density matrices,making all the estimated density matrices reconstructed with it physically meaningful.

关键词

量子态层析/密度矩阵/卷积神经网络/保真度/负本征值

Key words

quantum state tomography/density matrix/convolutional neural network/fidelity/negative eigenvalue

分类

物理学

引用本文复制引用

孙乾,蒋楠..基于卷积神经网络的高效量子态层析方法[J].北京师范大学学报(自然科学版),2024,60(3):325-330,6.

基金项目

国家自然科学基金资助项目(12204055) (12204055)

北京师范大学学报(自然科学版)

OA北大核心CSTPCD

0476-0301

访问量0
|
下载量0
段落导航相关论文