|国家科技期刊平台
首页|期刊导航|川北医学院学报|基于胃组织病理图像数据集的卷积神经网络模型对胃癌的早期预测价值

基于胃组织病理图像数据集的卷积神经网络模型对胃癌的早期预测价值OACSTPCD

Early prediction value of convolutional neural network model based on gastric histopathological image dataset for gastric cancer

中文摘要英文摘要

目的:探究胃组织病理图像数据集的卷积神经网络(CNN)模型对胃癌(GC)的早期预测价值,开发并验证GC早期预测模型.方法:将154 例GC患者按照分期不同分为早期组(n=87)和中晚期组(n=67).采用Logistic回归分析临床协变量;使用卷积神经网络(CNN)特征提取模型,搭建CNN预测模型;受试者工作特征(ROC)曲线评估区分度,校准曲线评估准确度.结果:年龄、基础疾病、幽门螺旋菌感染、红细胞计数(RBC)、白细胞计数(WBC)是GC的独立危险因素.最佳的CNN特征提取模型为3 个卷积层、2 个池化层和1 个全连接层.CNN的各项指标均优于其他模型;校准曲线分析,CNN模型的拟合效果显著.结论:基于胃组织病理图像数据集的CNN模型具有良好的预测性能,临床可行性较好.

Objective:To explore the early prediction value of convolutional neural network(CNN)model for gastric histologi-cal image dataset for gastric cancer(GC),and the development and validation of GC early prediction model.Methods:154 patients with GC were selected and divided into early stage group(n=87)and middle stage group(n=67)according to different stages.Logis-tic regression was used to analyze the clinical covariates,and using the CNN feature extraction model,the CNN prediction model was built.The ROC evaluates the degree of differentiation and the accuracy of the calibration curve evaluation.Results:Age,underlying dis-ease,helicobacter pylori infection,red blood cell count(RBC)and white blood cell count(WBC)were independent risk factors for GC.The optimal CNN feature extraction model consists of 3 convolution layers,2 pooling layers and 1 fully connected layer.The index of CNN was better than other models.Calibration curve analysis showed that the fitting effect of CNN model was remarkable.Conclusion:The CNN model based on gastric histopathological image dataset has good predictive performance and good clinical feasibility.

孙伟;史航;黄臻;法良玲

青岛市胶州中心医院病理科,山东 青岛 266300

临床医学

胃癌胃组织病理图像卷积神经网络模型影像组学

Gastric cancerGastric histopathological imageConvolutional neural network modelImagomics

《川北医学院学报》 2024 (007)

877-881 / 5

10.3969/j.issn.1005-3697.2024.07.003

评论