| 注册
首页|期刊导航|川北医学院学报|基于胃组织病理图像数据集的卷积神经网络模型对胃癌的早期预测价值

基于胃组织病理图像数据集的卷积神经网络模型对胃癌的早期预测价值

孙伟 史航 黄臻 法良玲

川北医学院学报2024,Vol.39Issue(7):877-881,5.
川北医学院学报2024,Vol.39Issue(7):877-881,5.DOI:10.3969/j.issn.1005-3697.2024.07.003

基于胃组织病理图像数据集的卷积神经网络模型对胃癌的早期预测价值

Early prediction value of convolutional neural network model based on gastric histopathological image dataset for gastric cancer

孙伟 1史航 1黄臻 1法良玲1

作者信息

  • 1. 青岛市胶州中心医院病理科,山东 青岛 266300
  • 折叠

摘要

Abstract

Objective:To explore the early prediction value of convolutional neural network(CNN)model for gastric histologi-cal image dataset for gastric cancer(GC),and the development and validation of GC early prediction model.Methods:154 patients with GC were selected and divided into early stage group(n=87)and middle stage group(n=67)according to different stages.Logis-tic regression was used to analyze the clinical covariates,and using the CNN feature extraction model,the CNN prediction model was built.The ROC evaluates the degree of differentiation and the accuracy of the calibration curve evaluation.Results:Age,underlying dis-ease,helicobacter pylori infection,red blood cell count(RBC)and white blood cell count(WBC)were independent risk factors for GC.The optimal CNN feature extraction model consists of 3 convolution layers,2 pooling layers and 1 fully connected layer.The index of CNN was better than other models.Calibration curve analysis showed that the fitting effect of CNN model was remarkable.Conclusion:The CNN model based on gastric histopathological image dataset has good predictive performance and good clinical feasibility.

关键词

胃癌/胃组织病理图像/卷积神经网络模型/影像组学

Key words

Gastric cancer/Gastric histopathological image/Convolutional neural network model/Imagomics

分类

医药卫生

引用本文复制引用

孙伟,史航,黄臻,法良玲..基于胃组织病理图像数据集的卷积神经网络模型对胃癌的早期预测价值[J].川北医学院学报,2024,39(7):877-881,5.

川北医学院学报

OACSTPCD

1005-3697

访问量0
|
下载量0
段落导航相关论文