基于神经网络平滑聚合机制的恶意代码增量训练及检测OA北大核心CSTPCD
Malware incremental training and detection method based on neural network smooth aggregation mechanism
为保证恶意代码变种检测模型的时效性,传统基于机器(深度)学习的检测方法通过集成历史数据和新增数据进行重训练更新模型存在训练效率低的问题.笔者提出一种基于神经网络平滑聚合机制的恶意代码增量学习方法,通过设计神经网络模型平滑聚合函数使模型平滑演进,通过添加训练规模因子,避免增量模型因训练规模较小而影响聚合模型的准确性.实验结果表明,对比重训练方法,增量学习方法在提升训练效率的同时,几乎不降低模型的准确性.
To ensure the timeliness of malware variant detection models,traditional machine (deep) learning-based detection methods integrate historical and incremental data and retrain to update detection models. However,this approach often suffers from low training efficiency. Therefore,this paper proposes an incremental learning method based on a neural network smooth aggregation mechanism for detecting malware variants,facilitating the smooth evolution of detection models. The method introduces a training scale factor to prevent the decrement of accuracy in the aggregated incremental model due to small training scales. Experimental results show that the proposed incremental learning method can improve training efficiency while maintaining the accuracy of the detection model compared to the re-training method.
郭志民;陈岑;李暖暖;蔡军飞;张铮
国网河南省电力公司电力科学研究院,郑州 450000
计算机与自动化
恶意代码变种检测增量学习神经网络模型聚合
malware variants detectionincremental learningneural networkmodel aggregation
《重庆大学学报》 2024 (006)
86-93 / 8
国家电网有限公司总部科技项目资助(5700-202024193A-0-0-00).Supported by the Science and Technology Project of State Grid Corporation of China(5700-202024193A-0-0-00).
评论