|国家科技期刊平台
首页|期刊导航|重庆理工大学学报|轻量化的YOLOv8锥桶检测算法研究

轻量化的YOLOv8锥桶检测算法研究OA北大核心CSTPCD

Research on lightweight YOLOv8 cone bucket detection algorithm

中文摘要英文摘要

针对现有无人驾驶方程式赛车对锥桶检测算法存在运算量大、精度低等问题,提出一种改进的YOLOv8n算法,该算法检测精度高、模型参数量少.改进算法引入Stem模块和EfficientNet-Lite网络结构来替换YOLOv8 主干网络,由于YOLOv8 的检测头中解耦的参数量占总参数的40%,故设计一种结构轻量化的检测头结构来减少模型的参数量,加入下采样倍数为4 的高分辨率特征图P2 用于检测微小目标.实验结果表明:在数据集上,改进的YOLOv8算法与原来的YOLOv8n算法相比,平均精度指标从90.1%提升到93.8%,参数量从3.00 M降到 1.37 M,计算量从8.1GFLOPs降到4.7GFLOPs;在实车测试中,不但有效减少了锥桶的漏检现象,而且模型内存缩减了49%.

This paper proposes a modified YOLOv8n algorithm to address the high computational complexity and low accuracy in the detection of cone barrels in existing unmanned formula racing cars.The algorithm achieves high detection accuracy and requires fewer model parameters.To improve the algorithm,the Stem module and EfficientNet-Lite network structure are first introduced to replace the YOLOv8 backbone network.Since YOLOv8's detection heads are decoupled parameters and account for 40%of the total,a lightweight detection head structure is designed to reduce the number of parameters in the model.Finally,a high-resolution feature map P2 with a downsampling factor of 4 is added to detect small targets.Our experimental results show the improved YOLOv8 algorithm improves the average accuracy index from 90.1%to 93.8%on the dataset compared to the original YOLOv8n and reduces the parameter count from 3.0 M to 1.37 M and the computational complexity from 8.1 GFLOPs to 4.7 GFLOPs.A vehicle test reveals it effectively reduces the missed detection of cone barrels and cuts the model memory by 49%.

李旭;李刚;李永明;李宁;梁海林

辽宁工业大学 汽车与交通工程学院,辽宁 锦州 121001

交通运输

深度学习锥桶检测轻量化主干网络轻量化检测头小目标检测层

deep learningcone bucket detectionlightweight backbone networklightweight detection headsmall object detection layer

《重庆理工大学学报》 2024 (013)

71-77 / 7

国家自然科学基金联合基金项目(U22A2043);辽宁省自然基金资助计划项目(2022-MS-376);辽宁省教育厅科研项目(JYTZD2023081)

10.3969/j.issn.1674-8425(z).2024.07.009

评论