| 注册
首页|期刊导航|重庆理工大学学报|基于改进YOLOv5的行人检测方法研究

基于改进YOLOv5的行人检测方法研究

薛继伟 薛鹏杰 胡馨元

重庆理工大学学报2024,Vol.38Issue(13):101-109,9.
重庆理工大学学报2024,Vol.38Issue(13):101-109,9.DOI:10.3969/j.issn.1674-8425(z).2024.07.013

基于改进YOLOv5的行人检测方法研究

Research on pedestrian detection method based on improved YOLOv5

薛继伟 1薛鹏杰 1胡馨元1

作者信息

  • 1. 东北石油大学 计算机与信息技术学院,黑龙江 大庆 163318
  • 折叠

摘要

Abstract

To address target occlusion and missed detections of small-scale pedestrians in pedestrian detection,a modified pedestrian detection model called DROE-YOLO is proposed based on YOLOv5.Specifically,the residual structure of Res2Net is introduced into the C3 module of YOLOv5 to enhance the network's representation capability for pedestrian targets.Additionally,Dynamic Head is employed as the detection head for YOLOv5 to improve detection accuracy and robustness.The Simplified OTA method is adopted for label assignment strategy,which enables more accurate matching between ground truth boxes and predicted boxes.Finally,the soft-NMS+EIOU method is used to further improve the detection accuracy of pedestrian targets.Our experimental results on the CrowdHuman dataset demonstrate that DROE-YOLO achieves excellent performances in pedestrian detection tasks.Compared to the baseline model,with a slight increase in parameters,DROE-YOLO model improves the precision by 3.3%and the recall by 6.5%,making it more suitable for practical pedestrian detection tasks.

关键词

行人检测/Res2Net/Dynamic-Head/Simplified-OTA/Soft-NMS

Key words

pedestrian-detection/Res2Net/Dynamic-Head/Simplified-OTA/Soft-NMS

分类

信息技术与安全科学

引用本文复制引用

薛继伟,薛鹏杰,胡馨元..基于改进YOLOv5的行人检测方法研究[J].重庆理工大学学报,2024,38(13):101-109,9.

基金项目

黑龙江省省属本科高校基本科研业务费项目(2022TSTD-03) (2022TSTD-03)

重庆理工大学学报

OA北大核心

1674-8425

访问量0
|
下载量0
段落导航相关论文